
ВЫЧИСЛЕНИЕ ОПРЕДЕЛИТЕЛЕЙ.

Урок-практикум

ЦЕЛИ УРОКА:

- Продолжить работу над основными понятиями теории матриц и определителей;
- Закрепить практически полученные знания в лекционном курсе;
- Научиться вычислять определители любых порядков различными методами.

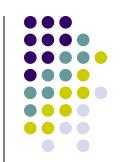
Роль матриц и определителей:

Широко применяются в современных науках, таких как

- 1. Теоретическая физика;
- 2. Электродинамика;
- з. Квантовая механика;
- 4. Техническая электроника;
- 5. Управление и планирование производства и многих других.

Зачем нужны определители?

Понятие определителя возникло в связи с проблемой решения системы n-линейных алгебраических уравнений. Например, если рассмотреть простейшие случаи, когда n=2,n=3, то получим


системы двух линейных уравнений:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases}$$

или трех линейных уравнений:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3. \end{cases}$$

Из истории создания определителей.

Первые идеи, которые привели к созданию теории определителей и применению их к решению систем линейных алгебраических уравнений, восходят к знаменитому ученому Г. В. Лейбницу.

В 1693 году Лейбниц по существу ввел понятие определителя.

В XVIII столетии вопросами теории определителей и систем линейных алгебраических уравнений занимались: Г. Крамер, французские ученые Э. Безу, П. С. Лаплас,

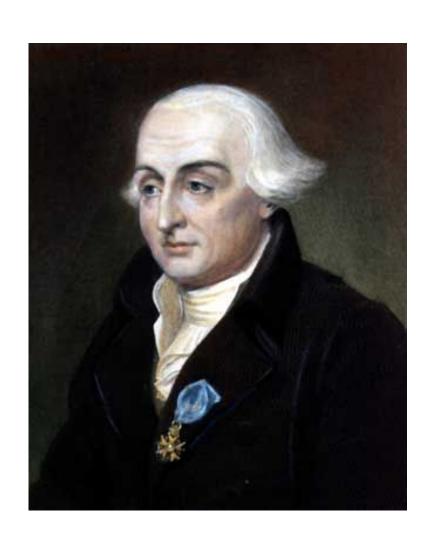
О. Л. Коши, знаменитый ученый

К. Ф. Гаусс, английский математик

А. Келли, гениальный русский ученый

Н. И. Лобачевский.

П. С. Лаплас (1749-1827)



Доказал теорему о разложении определителя по строкам(столбцам), а также ряд важных свойств определителей.

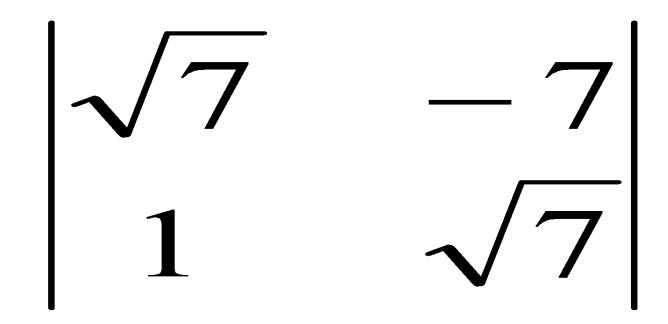
Ж. Л. Лагранж (1736-1813)

Ввел обозначение Δ для определителя, рассмотрел алгебраические дополнения, доказал теоремы замещения и аннулирования.

К. Ф. Гаусс (1777-1855)

Рассмотрел произведение определителей второго порядка, ввел название «детерминант».


Н. И. Лобачевский (1792-1856)



Предложил свой собственный способ решения систем линейных уравнений. Впервые включил теорию определителей в учебное пособие по алгебре.

1. Вычислить определитель второго порядка:

2. Вычислить определитель:

2	7	O	4
4	-5	O	2
8	-2	O	-4
4	6	O	6

3. Сравнить определители:

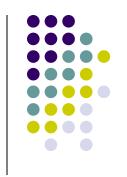
6	5	8		6	-9	1
-9	3	-7	И	5	3	
1	2	4		8	-7	4

4. Вычислить определитель:

$\cos^2 \alpha$	$\sin^2 \alpha$	1
$\cos^2 \beta$	$\sin^2 \beta$	1
$\cos^2 \gamma$	$\sin^2 \gamma$	1

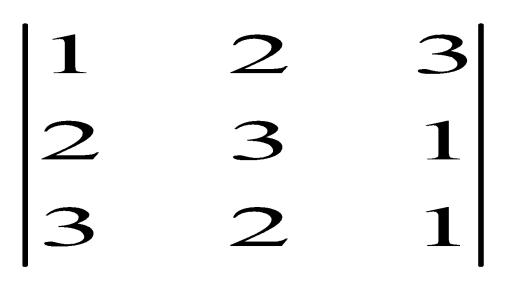
5. Вычислить определитель:

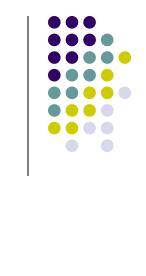
\mathbf{O}	1	2	3
7	8	-4	5
O	O	2	3
\mathbf{O}	O	O	1


Даны две матрицы:

$$A = \begin{vmatrix} -3 & 5 & 5 \\ 9 & -8 & -8 \\ 6 & 3 & 3 \end{vmatrix}$$

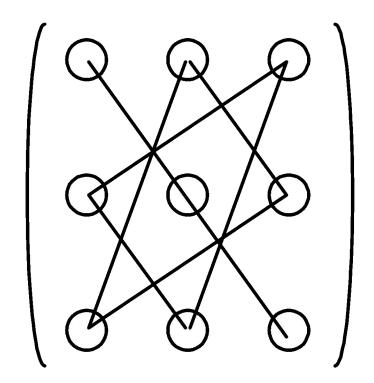
$$B = \begin{vmatrix} 3 & 2 & 1 \\ -9 & 8 & -4 \\ 3 & 4 & 5 \end{vmatrix}$$



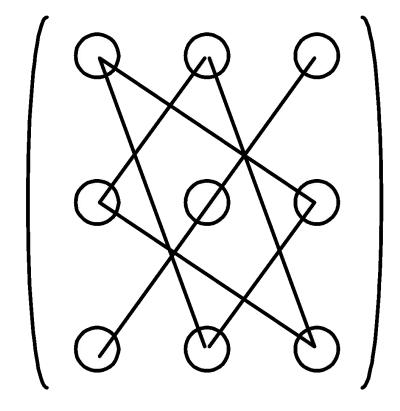

7. Вычислить определитель:

1	3	6
O	5	4
O	1	3

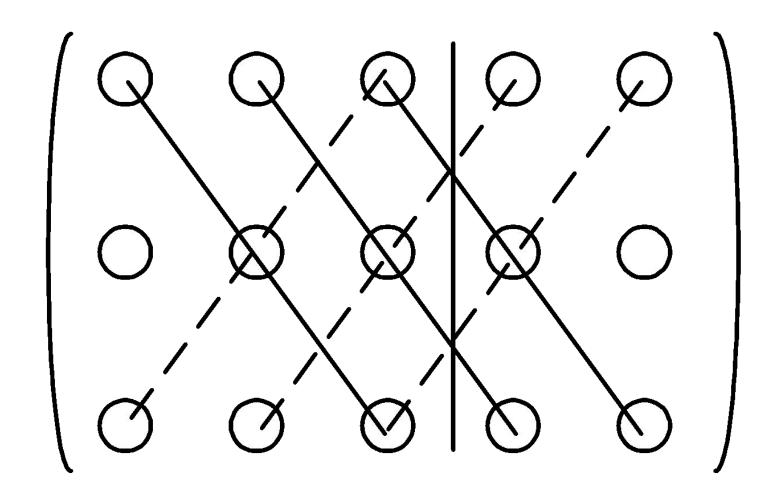
1. Вычислить определитель третьего порядка:



Первая группа – по правилу треугольников; Вторая - по правилу 3 $_{\times}$ 5; Третья - путем разложения по первой строке.


Правило треугольников:


+



Правило «3×5»

Теорема Лапласа:

Определитель квадратной матрицы равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения:

$$\Delta = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in} = \sum_{s=1}^{n} a_{is}A_{is}$$

(разложение по элементам i-й строки; i=1; 2;...;n);

$$\Delta = a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj} = \sum_{s=1} a_{sj}A_{sj}$$

(разложение по элементам j-го столбца; j = 1; 2;..; n).

2. Найти объем параллелепипеда, построенного на векторах

$$\vec{a}$$
 {1,2,3}
 \vec{b} {2,3,1}
 \vec{c} {3,2,1}

3 * .Решить уравнение:

$$\begin{vmatrix} x & -2 & 1 \\ x & x & 1 = 0 \\ 9 & 9 & x \end{vmatrix}$$

4. Вычислить определитель четвертого порядка:

1	1	1	1
2	1	8	-2
3	2	1	3
4	2	4	O

5 ^{*}. Упростить и вычислить определитель:

$$\begin{vmatrix} ax & a^{2} + x^{2} & 1 \\ ay & a^{2} + y^{2} & 1 \\ az & a^{2} + z^{2} & 1 \end{vmatrix} = 0$$

Как изменится определитель n-го порядка, если у каждого элемента изменить знак на противоположный?

Домашнее задание:

- Повторить определение и свойства определителей.
- 2. Практическое задание.

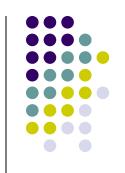
Уровень сложности - ниже среднего.

Вычислить определители:

	6	-5		5		-1
1)			2)	0		4
	7	3		1	-4	3

Уровень сложности – средний.

1. Решить неравенство:


$$\begin{vmatrix} 2 & x+2 & -1 \\ 1 & 1 & -2 \\ 5 & -3 & x \end{vmatrix} \ge 0$$

2. Вычислить определитель:

1	2	4	3
5	1	1	2
7	5	9	8
6	7	8	9

Уровень сложности – выше среднего. Упростить и вычислить определитель:

$$\begin{vmatrix} m+a & m-a & a \\ n+a & 2n-a & a \\ a & -a & a \end{vmatrix}$$

Вычислить определитель пятого порядка:

3	1	8	9	7
3 0 0 0 2	0	9	0	0
0	0	4	9	0
0	0	5	6	9
2	1	7	4	3