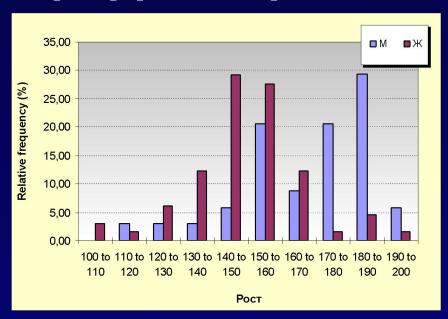
Биостатистика

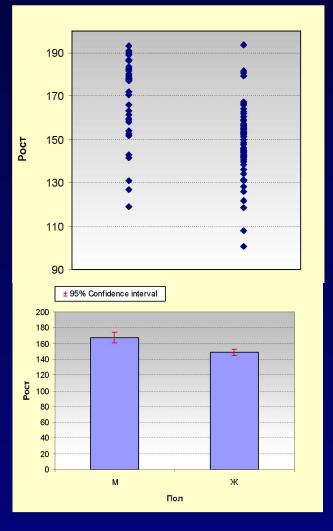
3. Анализ количественных признаков


Рубанович А.В.

Институт общей генетики им. Н.И. Вавилова РАН

Чем мы занимались на предыдущем занятии?

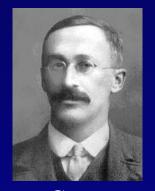
- Мы вспомнили общепринятые методы описания и представления данных
- ☐ На примере качественных признаков (данных о частотах) познакомились с принципами построения и проверки статистических гипотез
- Поговорили о вероятностях возможных ошибок, возникающих при использовании всякого статистического теста
- При этом мы сознательно не затрагивали ряд традиционных для статистики тем: сравнение средних, критерий Стьюдента и т.д.
- Отчасти потому, что вы об этом наверняка наслышаны, но в основном из методических соображений


Перейдем, наконец, к задаче о сравнении средних для двух выборок. Например, рост в выборках «М» и «Ж»

Нулевая гипотеза состоит в предположении, что обе выборки изъяты из одной генеральной совокупности (т.е. различий нет):

 H_1 : $x_1 \neq x_2$ (двусторонний тест)

Дальше надо предложить способ оценить вероятность ошибки I рода


На прошлом занятии мы рассмотрели достаточно универсальный способ построения статистических критериев: Z – статистика, т.е. $Z = \xi / \sigma$

$$Z = \frac{\overline{x_1 - x_2}}{\sigma_{\overline{x_1 - x_2}}} \quad \text{, r.e. pa}$$

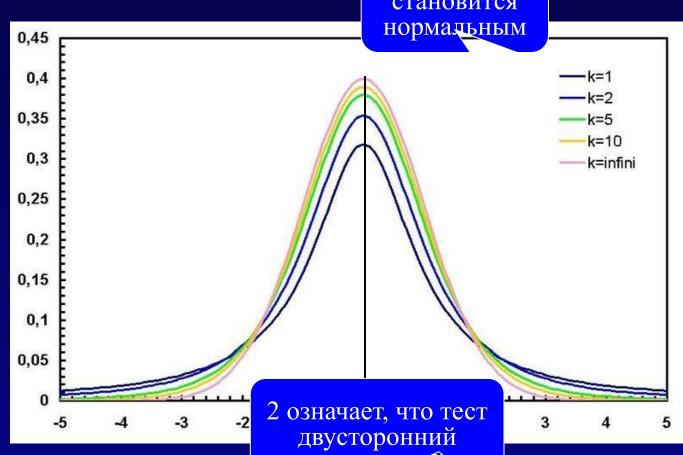
, т.е. разность средних, деленная на стандартное отклонение этой разности.

Есть надежда, что эта величина имеет нормальное распределение со средним 0 и дисперсией 1. Так оно и есть, но только при больших объемах выборок!

Для не очень больших выборок распределение величины следует распределению Стьюдента.

Это распределение случайной величины, равной

$$t = \frac{\xi_0}{\sqrt{\frac{1}{k}(\xi_1^2 + \xi_2^2 + \dots + \xi_k^2)}}$$


, где все ${{\xi}_{_{i}}}$ - ${
m \underline{hopmaльны}}$

k – число степеней свободы

Вильям Стьюдент (Госсет) (1876-1936) Работал на пивоваренном заводе Гиннесса Опубликовал «распределение Стьюдента» в 1908 г.

Распределение Стьюдента очень похоже на нормальное, но имеет

большую дисперсию: D(t) = k/(k-2) > 1 При $k \to \infty$ становится

Excel умеет вычислять «хвосты» распределения Стысдента:

0.024 = СТЬЮДРАСП(2; 100; 1)

3 варианта использования теста Стьюдента:

Сравнение выборочного среднего с известным числом

1 Сравнение двух зависимых выборок

Для каждой особи проводят 2 однотипных замера:

- до и после приема лекарства,
- в этом году и в прошлом году и т.д.

Сравнение двух выборочных средних для независимых выборок

Возможно раного объема

Упражняемся ...

15 октября 2011 г. президент Д. Медведев сообщил, что средняя продолжительность жизни в РФ

В этом месяце в районном моргоценка: 62±3 года. Отличается

Эта запись означает, что наша величина имеет распределение Стьюдента с *n*-1 степенями свободы

лучена другая ане?

Вычисляем величину

$$\frac{\overline{x} - \mu}{\sigma_{-}} = \frac{\overline{x} - \mu}{SI}$$

2 означает, что тест двусторонний

$$P = 0.022$$
 = СТЬЮДРАСП((69-62)/3; 100-1; 2)

<u>Вывод</u>: нулевая гипотеза отвергается. Вероятность того, что при этом отвергли правильную нулевую гипотезу равна 0.022 (ошибка I рода). Выборка по данным районного морга не соответствует среднему по стране. Различия <u>статистически значимы.</u>

Никогда не пишите, что различия достоверны! Достоверно это то, что происходит с вероятностью 1

В данном примере среднее для одной выборки сравнивалось с заранее известной величиной. Это так называемый одновыборочный тест (мы это уже делали: помните 470 из 1000?)

в случае зависимых выборок

Это простой случай. Вычисляется *t*-статистика

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sigma_{\bar{x}_1 - \bar{x}_2}} = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{SE_1^2 + SE_2^2}}$$

и вес хвостов распределения Стьюдента с $n_1 + n_2 - 2$ степенями свободы.

Можно ни о чем этом не думать и использовать =TTECT(массив1; массив2; 2; 1)

2 означает, что тест двусторо 1 означает, что Для независимых выборок все нескольквый оржиее... зависимы

в случае независимых выборок

При сравнении средних двух независимых выборок возможны 2 ситуации:

 $\sigma_1 = \sigma_2$, т.е. изменчивость данных в обеих выборках одинакова

Тогда все просто: вычисляется статистика $t = \frac{x_1 - x_2}{\sqrt{SE_1^2 + SE_2^2}} \sim t(n_1 + n_2 - 2)$

 $\sigma_1 \neq \sigma_2$, т.е. изменчивость данных в выборках неодинакова, и эти различия статистически значимы. Тогда вычисляется объединенная дисперсия для двух выборок. Число степеней свободы тоже модифицируется.

Не будем расписывать, как это делается, а запустим Excel

=TTECT(массив1; массив2; 2; 2)

2 означает, что тест двусторонний

$$\begin{array}{c}
2 - \sigma_1 = \sigma_2 \\
3 - \sigma_1 \neq \sigma_2
\end{array}$$

Надо сказать, что Excel не проверяет статистическую значимость $\sigma_1 \neq \sigma_2$, Более адекватно поступает WinStat

в случае независимых выборок

При сравнении средних двух независимых выборок возможны 2 ситуации:

 $\sigma_1 = \sigma_2$, т.е. изменчивость данных в обеих выборках одинакова

Тогда все просто: вычисляется статистика $t = \frac{x_1 - x_2}{\sqrt{SE_1^2 + SE_2^2}} \sim t(n_1 + n_2 - 2)$

 $\sigma_1 \neq \sigma_2$, т.е. изменчивость данных в выборках неодинакова, и эти различия статистически значимы. Тогда вычисляется объединенная дисперсия для двух выборок. Число степеней свободы тоже модифицируется.

Не будем расписывать, как это делается, а запустим Excel

=TTECT(массив1; массив2; 2; 2)

2 означает, что тест двусторонний

$$\begin{array}{c}
2 - \sigma_1 = \sigma_2 \\
3 - \sigma_1 \neq \sigma_2
\end{array}$$

Надо сказать, что Excel не проверяет статистическую значимость $\sigma_1 \neq \sigma_2$, Более адекватно поступает WinStat

Упражняемся...

Ozvazzna	Число учеников (из 100)			
Оценка	Физика	Физкультура		
2	10	0		
3	50	10		
4	30	20		
5	10	70		

Считаем t-статистику:

$$t = \frac{4.6 - 3.4}{\sqrt{0.08^2 + 0.07^2}} = 11.3$$

= СТЬЮДРАСП(11,3; 100-2; 2)

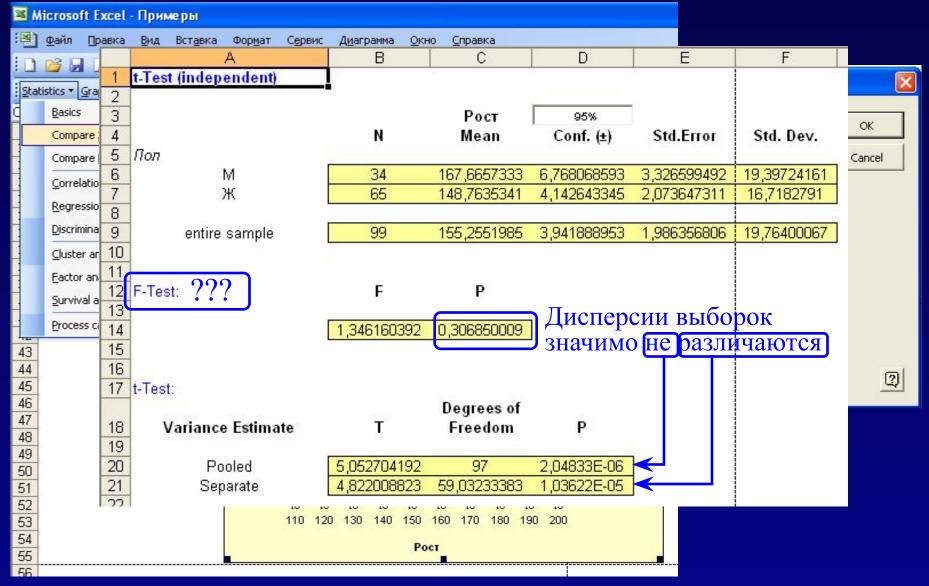
Значимо! $P = 10^{-19}$

Средняя оценка по физике = 3.4. Дисперсия = 0.64

Средняя оценка по физкультуре = 4.6. Дисперсия = 0.44

 \blacksquare Чему равны стандартные отклонения и ошибки самих оценок (SD и SE)?

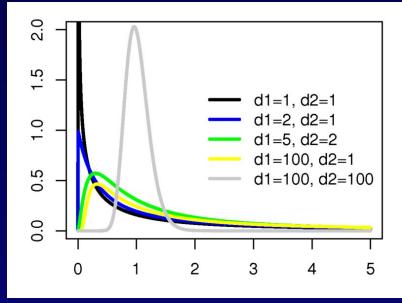
По физике: 3.4 ± 0.1 Можно записать так 3.40 ± 0.08 , но не так 3.4 ± 0.08


$$SD = \sqrt{0.64} = 0.8$$
 $SE = \frac{0.8}{\sqrt{100}} = 0.08$

По физкультуре: 4.6±0.1

$$SD = \sqrt{0.44} = 0.66$$
 $SE = \frac{0.66}{\sqrt{100}} = 0.07$

С помощью



Сравнение дисперсий

Р. Фишер построил критерий (односторонний) для сравнения дисперсий (F-тест) и вычислил функцию распределения соответствующей статистики.

$$F = \frac{\sigma_2^2}{\sigma_1^2}$$

(большая на меньшую),

В Excel имеется функция, вычисляющая это распределение

Можно также сравнить дисперсии двух выборок

$$H_0$$
: $\sigma_1 = \sigma_2$ против H_1 : $\sigma_1 < \sigma_2$

=FPAC $\Pi(1,5;100;100)$

=ФТЕСТ(массив1; массив2)

Не путайте статистику (критерий) Фишера с точным тестом Фишера!

Сравнение дисперсий

Дисперсионный анализ (ANOVA) – сравнение нескольких выборок

Рассмотрим набор k выборок: (при k = 2 все сведется к критерию Стьюдента)

	Среднее	Дисперсия
Выборка 1	$\frac{-}{x_1}$	σ_1^2
Выборка 2	$\frac{-}{x_2}$	σ_2^2
	•••	•••
Выборка <i>k</i>	$\dfrac{-}{x_k}$	$oldsymbol{\sigma}_k^2$
Все выборки	$\frac{\overline{x}}{x}$	σ^2

Р. Фишер показал, что

$$\sigma^2 = \sigma_W^2 + \sigma_B^2$$

т.е. дисперсию объединенной выборки можно разложить на сумму средней дисперсии внутри выборок (σ_w^2) и межвыборочную дисперсию (σ_B^2):

$$\sigma^{2} = \frac{\sum_{i=1}^{k} \sigma_{k}^{2}}{k} + \frac{\sum_{i=1}^{k} (\bar{x}_{i} - \bar{x})^{2}}{k}$$

Ничего, кроме школьной алгебры!

Средняя дисперсия

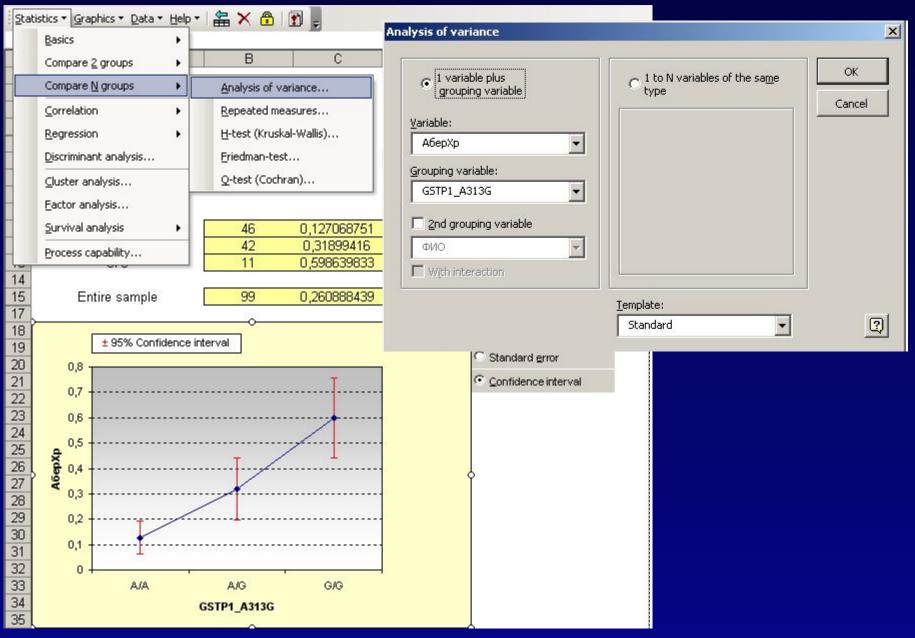
Статистика

 $F = \frac{\sigma_B^2}{\sigma_W^2}$

Дисперсия средних

Межвыборочная изменчивость

Внутривыборочная изменчивость


Остаточная изменчивость

 H_0 : $x_1 = x_2 = ... = x_k$

 H_1 : хотя бы одно среднее отличается

Факториальная изменчивость

Сравнение нескольких выборок

Сравнение нескольких выборок Упражняемся...

Для нашей учебной базы данных сравним частоты аберраций хромосом для носителей различных генотипов по локусу GSTP1

	А	В		С	D	the Si	tatistics Add-In for M	icrosoft® Excel	F	1
1	Analysis of Variance									
2	<u> </u>									
3	Variable:	АберХр								
4		GSTP1 A313G								
5	g.oupou ny.									
9.0		Sum of	Dec	rees of	Mea	ın				
6		Squares	_	eedom	Squa	ге	F		Р	
7		47								
8	Between Groups	2,220394197		2	1,11019	7098 1	1,780921	31 2,65	5812E-05	
9	Within Groups	9,046739097		96	0,09423	6866		- 10		
10	Total	11,26713329		98	0.11497					
				Α	В	С	D	Е	F	G
	Межгруп		1	Однофакто	орный дисг	ерсионный	йанализ			
		— ·		LATOFIA						
		раз выше		ИТОГИ	0	0	0	П		
			5	<i>Группы</i> АА	Cuem 46	<i>Сумма</i> 5,845163		Дисперсия 0,048833		
			6	AG	42	13,39775	0,127003	0,153666		
			7	GG	11	6,585038	0,59864			
1	Можно обойтись па	акетом	8			- 1				
	72074110 0001111102 11		9							
"A HOHID HOUSE IN EVOI		_	Дисперсио							
((«Анализ данных» в Excel		11	очник вари		df	MS			критическ
			_	Между гру		2		11,78092	2,66E-05	3,091191
			13 14	Внутри гру	9,046739	96	0,094237			
			15	Итого	11,26713	98				
			,0	7.1101.0	11,20110		n J			

Важное предупреждение

t-тест (Стьюдента) F-тест (Фишера) Дисперсионный анализ

Средние

только для нормально распределенных данных!

В противном случае можно получить совершенно абсурдный результат:

Фирма 1	Фирма 2
100	120
100	120
100	120
100	120
110	120
110	500
103.3	183.3

В какой фирме зарплата выше?

=TTECT(массив1; массив2; 2; 3)

$$P = 0.235$$

Эти средние значимо не различаются по тесту Стьюдента!

На этом примере видно, что в ряде случаев надо сравнивать не сами данные, а их порядковые ранги (номера в последовательности)

Ранговые статистики

Данные

Фирма 1	Фирма 2
100	120
100	120
100	120
100	120
110	120
110	500
103.3	183.3

Ранги

Фирма 1	Фирма 2
1	7
2	8
3	9
4	10
5	11
6	12
3.5	9.5

Средние

0.0002 =TTECT(массив1; массив2; 2; 2) Другое дело! Хотя и это некорректно...

Ранговые критерии

Ранговые критерии являются <u>непараметрическими</u>, т.е. такими, которые не зависят от характера распределения данных. В частности они нечувствительны к выбросам отдельных точек

Самый простой тест – критерий знаков для пары зависимых выборок

Плацебо	Лекарство	Разность
105	120	+
110	115	+
120	110	-
103	125	+
115	120	+
121	134	+
107	110	+
114	117	+

1 минус из 8

Приводит ли лекарство к увеличению систолического давления?

Различия значимы по одностороннему тесту (но не по двустороннему!)

Ранговые критерии

Для сравнения 2 независимых выборок используется <u>тест Манна – Уитни</u>, который основан на вычислении суммы рангов для каждой из выборок

Как всегда H_0 : выборки взяты из одной генеральной совокупности.

-2.057004362

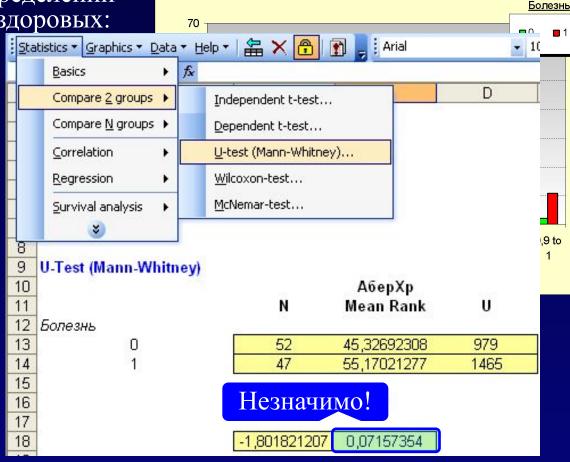
-2,030799745

86,41661279

0.042370006

0.045349121

Различия значимы по Стьюденту (независимо от условия равенства дисперсий)


Проверяем нормальность ...

Строим гистограммы распределений аберраций для больных и здоровых:

Необходимо использовать непараметрический тест Манна-Уитни

Попробуем все это воспроизвести:

Проверяем значимость различий по Стьюденту:

-2,057004362	97	0,042370006
-2,030799745	86,41661279	0,045349121

Различия значимы по Стьюденту (независимо от условия равенства дисперсий)

Что значит «незначимо»?

Допустим мы не обнаружили статистическую значимость различий, о чем с грустью сообщаем в публикации. Достаточно ли этого?

НЕТ! Мы должны продемонстрировать, что объемы наших выборок достаточны, чтобы обнаружить эффект, если он существует.

Мощность (чувствительность) используемых тестов должна быть не ниже 80% (тогда упускаем не более 20% открытий)

Только в этом случае незначимые различия можно рассматривать как отрицательный результат

Что значит «незначимо»?

Допустим, что для 2 выборок имеем:

	n	$\frac{-}{x}$	SE	SD
Выборка 1	100	10	1	10
Выборка 1	100	12	1	10

Тогда по тесту Стьюдента различия незначимы и P = 0.159

Compare2/ Numerical observations/ Normal distributin/mean value

Проверим мощность данного теста

Compare2/ Power/ Comparison of means

Size A - 100 Size B - 100DETECT a difference 2

 \Rightarrow Мощность всего 29%!

т.е. доля упущенных открытий более 70%! 😕

О чем мы обязаны сообщить в публикации (правда биологи этого почти никогда не делают)

Чтобы выйти на мощность 80% объемы выборок должны быть 400 и 400

Compare 2/ Sample size/ Means

На сегодня это все 🙂

Напоследок хочу посоветовать:

Проверяйте характер распределения сравниваемых величин. Или хотя бы стройте гистограммы распределений – для себя.

- Поставьте на свой компьютер WinStat и постройте пример использования дисперсионного анализа
- На всякий случай проверяйте значимость различий параметрическими и непараметрическими методами.
- Оценивай мощность теста в случае получения незначимых результатов