ARCH and GARCH

Modeling Volatility Dynamics

Modeling Unequal Variability

- Equal Variability: Homoscedasticity
- Unequal Variability: Heteroscedasticity
 - Means any variability (around the mean) that is not homoscedasticity
 - Models must be developed for specific cases

What These Acronym Mean?

- ARCH
 - Autoregressive Conditional Heteroscedasticity
- GARCH
 - Generalized ARCH

Information in e²

- Let ε_{t} have the mean 0 and the variance σ_{t} .
- Let e_t be the residual of a model fitted.
- Then:
 - $-e_t$ estimates ε_t
 - $-e_t^2$ estimates the variance σ_t^2 .

ARCH Modeling of σ_t^2 .

ARCH(1)

$$\sigma_t^2 = \varpi + \alpha \varepsilon_{(t-1)}^2$$

• ARCH as AR(1) on $\varepsilon_t^2 = \sigma_t^2 + v_t$

$$\varepsilon_t^2 = \boldsymbol{\omega} + \alpha \varepsilon_{(t-1)}^2 + \boldsymbol{v}_t$$

GARCH

GARCH(1)

$$\sigma_t^2 = \varpi + \alpha \varepsilon_{(t-1)}^2 + \beta \sigma_{(t-1)}^2$$

• GARCH (1) as ARMA(1,1) on $\varepsilon_t^2 = \sigma_t^2 + v_t$

$$\varepsilon_t^2 = \varpi + (\alpha + \beta)\varepsilon_{(t-1)}^2 + \nu_t - \beta\nu_{(t-1)}$$

Asymmetry in GARCH - TARCH

• TARCH(1,1)

$$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \gamma d \varepsilon_{t-1s}^2 + \beta \sigma_{t-1}^2$$

$$d = 1$$
 if $\varepsilon_{t} < 0$, and $= 0$ if $\varepsilon_{t} \ge 0$

Asymmetry in GARCH - EGARCH

• EGARCH(1,1)

$$\left| \frac{\log(\sigma_{t}^{2})}{\prod_{\sigma_{t}^{2}>0}} \right| = \omega + \beta \log \sigma_{t-1}^{2} + \alpha \left| \frac{\varepsilon_{t-1}}{\sigma_{t-1}} \right| + \gamma \frac{\varepsilon_{t-1}}{\sigma_{t-1}}$$

 $\gamma \neq 0$ for asymmetric effect

Eviews Command

ARCH(p, q) series_name c