Самарский государственный экономический университет Кафедра математической статистики

ГЕТЕРОСКЕДАСТИЧНОСТЬ И ЕЕ ПОСЛЕДСТВИЯ

Обнаружение гетероскедастичности. Устранение гетероскедастичности.

Презентация лекции по курсу "Эконометрика" доцента кафедры математической статистики СГЭУ,

к.ф.-м.н., Ширяевой Людмилы Константиновны E-mail: Shiryeva LK@mail.ru

План

- Гетероскедастичность и ее последствия
- Методы обнаружения гетероскедастичности.
- Методы устранения гетероскедастичности.
 Обобщенный метод наименьших квадратов

Гетероскедастичность и ее последствия

- Свойства эмпирических коэффициентов регрессии напрямую зависят от свойств случайной компоненты ε.
- Для получения статистически надежных эмпирических коэффициентов регрессии необходимо следить за выполнимостью условий Гаусса-Маркова.
- При нарушении условий Гаусса-Маркова МНК может давать эмпирические коэффициенты регрессии с плохими статистическими свойствами.

Гетероскедастичность и ее последствия

- Согласно второму условию Гаусса-Маркова, дисперсия случайного фактора должна быть одинаковой для всех наблюдений, т.е. D(ε_i)= D(ε_j).
- Выполнение этого условия называется <u>гомоскедастичностью</u>, а его нарушение - <u>гетероскедастичностью</u>

Иллюстрация гомоскедастичности

Вероятность того, что случайная ошибка примет какое-–либо значение одинакова дл **BCEX** наблюдений

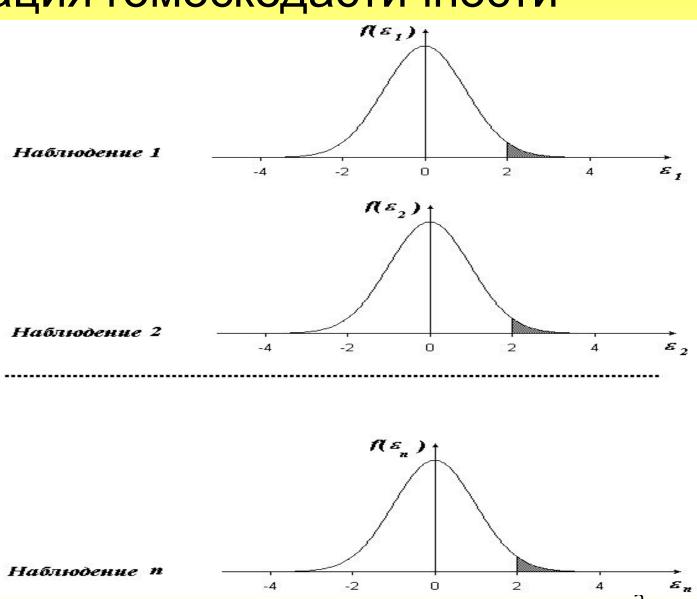
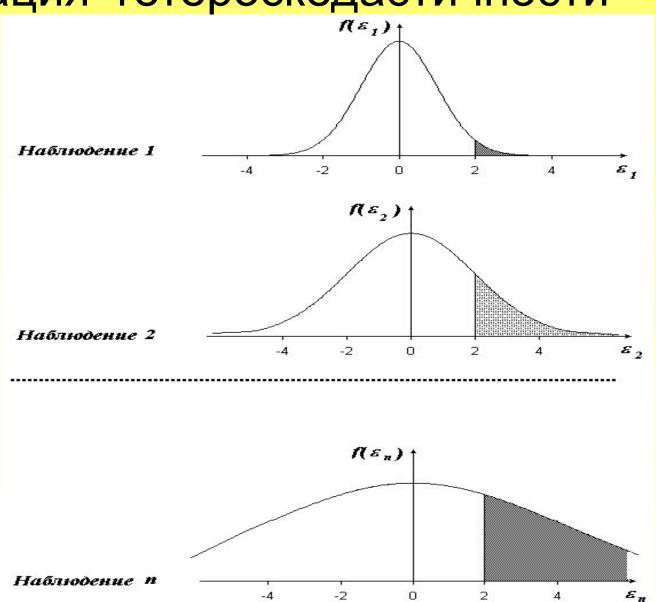


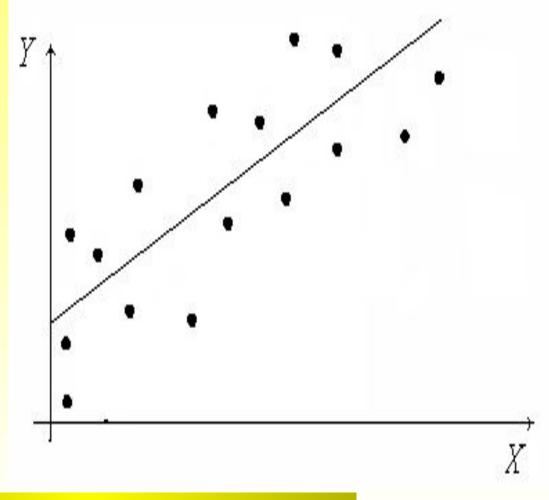
Иллюстрация гетероскедастичности

Вероятность того, что случайная ошибка примет какое-либо значение неодинакова для всех наблюдений



Гомоскедастичность означает "одинаковый разброс".

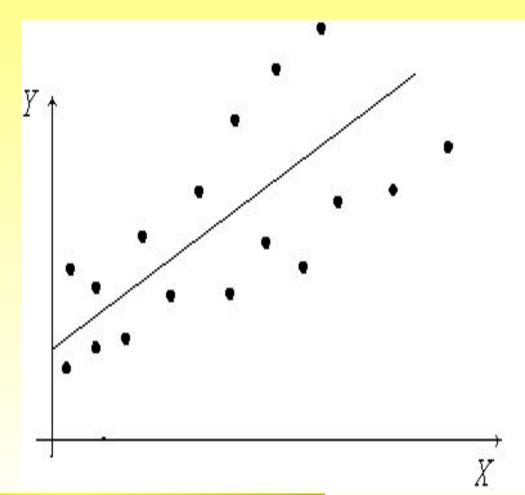
Типичный вид облака точек в модели с гомоскедастичным и остатками



"гетероскедастичное" облако точек

Гетероскедастичность означает "неодинаковый разброс".

Типичный вид облака точек в модели с гетероскедастичными остатками



Последствия применения МНК в случае гетероскедастичности

- МНК-оценки не будут являться эффективными;
- формулы для вычисления стандартных ошибок коэффициентов регрессии становятся некорректными;
- дисперсия остатков регрессии становится смещенной оценкой для дисперсии случайной компоненты;
- все выводы, получаемые на основе F и t -статистик, а также интервальные оценки становятся ненадежными.

Проверка остатков модели на гетероскедастичность

- Первичная проверка на наличие гетероскедастичности осуществляется с помощью визуального анализа поведения остатков регрессии.
- Дальнейшая проверка на наличие гетероскедастичности осуществляется уже с помощью статистических тестов.

Методы обнаружения гетероскедастичности

Тесты на гетероскедастичность

графический тест

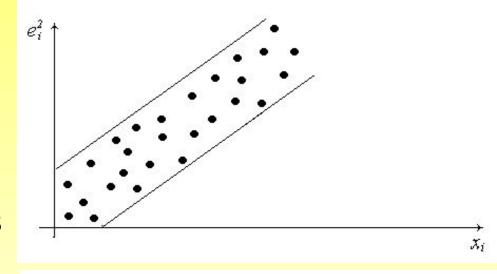
статистические тесты

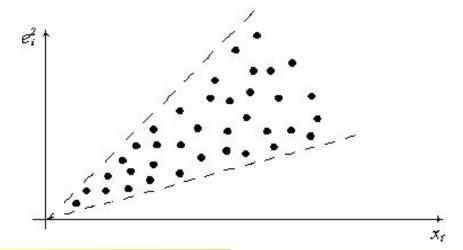
графический анализ остатков

тест Спирмена тест Квандта тест Глейзера

Графический анализ остатков. Гетероскедастичность

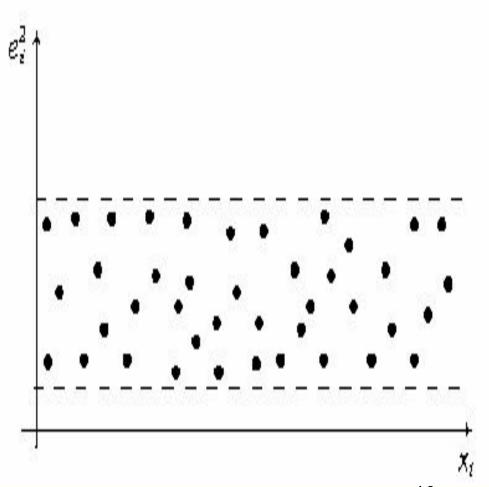
Если все отклонения расположены внутри расширяющейся или наклонной полосы, то это свидетельствует в пользу гетероскедастичности





Графический анализ остатков. Гомоскедастичность.

• Если все отклонения равномерно заполняют некоторую полосу постоянной ширины, то это свидетельствует в пользу гомоскедастичности.



статистические тесты

Сравнительный анализ статистических тестов

Наименование	Основная идея теста	Статистика
Тест Спирмена	Проверка корелированности остатков регрессии <i>е</i> и значений <i>X</i>	<i>t</i> - статистика
Тест Квандта	Проверка значимости отличий ESS для верхней и нижней третей упорядоченной выборки	<i>F</i> - статистика
Тест Глейзера	Подбор формы связи между остатками регрессии е и значениями X	<i>t</i> - статистика и <i>F</i> - статистика

Общая схема проведения любого статистического теста

 $\hat{E}_{\emph{i}\grave{a}\acute{a}\ddot{e}}$

K

Ккрит

 H_0

Тест ранговой корреляции Спирмена

- Тест Спирмена проверяет *коррелированность* модулей остатков регрессии со значениями объясняющей переменной.
- При использовании этого теста предполагается, что дисперсия случайной ошибки либо уменьшается, либо увеличивается по мере увеличения X.
- При этом точки (x_i,e_i) могут располагаться внутри либо расширяющейся, либо наклонной полосы (<u>см. слайд 12</u>).
- Теснота взаимосвязи между модулями остатков регрессии |ei| и значениями хі оценивается с помощью выборочного рангового коэффициента корреляции r_{xe}.
- Если связь между абсолютными величинами остатков регрессии и значениями может быть признана статистически значимой, то принимается гипотеза о наличии гетероскедастичности.

 16

Порядок выполнения теста Спирмена

- 1) выполняется регрессия переменной Y на переменную X,
- 2) для каждого і -ого наблюдения вычисляют модуль остатков регрессии ei|;
- 3) значения хі и модули |ei| ранжируются, т. е. упорядочиваются по возрастанию;
- 4) вычисляются ранги порядковые номера значений в ранжированном ряде из значений хі, и ранги |еі| порядковые номера значений в ранжированном ряде, составленном из модулей остатков;
- 5) для каждого i-ого наблюдения вычисляется значение di как разность между рангами хi, и |ei| (пусть, например, наблюдаемое значение объясняющей переменной х11 является 33-им по величине, т.е. ранг х11 равен 33, а |e11| является 5-ым по величине, т.е. ранг |e11| равен 5, тогда d11=33-5=28);
- 6) вычисляется выборочный коэффициент ранговой корреляции по следующей формуле:

$$r_{xe} = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)}$$

Порядок выполнения теста Спирмена (окончание)

- •7) выдвигаются нулевая и альтернативная гипотезы:
- •Н $_0$:(ранговый коэффициент корреляции для генеральной совокупности $\rho_{xe}=0$, или гетероскедастичность отсутствует);
- Н1: (ранговый коэффициент корреляции для генеральной совокупности рхе отличен от 0, или гетероскедастичность имеет место);
- •8) статистика для проверки Но имеет вид:

$$t = \frac{r_{xe}\sqrt{n-2}}{\sqrt{1-r_{xe}^2}} \sim t(n-2)$$

- •9) строится двусторонняя критическая область $|t| > t_{\text{кр.дв}}(\alpha, n-2)$;
- •10) если наблюдаемое значение t-статистики попадает в критическую область, то принимается гипотеза о наличии гетероскедастичности; если же наблюдаемое значение t-статистики попадает в область принятия гипотезы, то принимается гипотеза о наличии гомоскедастичности.
- •Замечание. Если в модели более одной объясняющей переменной, то с помощью t-статистики проверка гипотезы может выполняться для каждой из переменных отдельно..

Тест Голдфелда-Квандта

- •Тест Голдфелда-Квандта предполагает, что с ростом хі
- •дисперсия D(ε_i) либо растет, т.е.

$$\sigma(\varepsilon_i) \approx \lambda x_i$$

•либо падает, т.е.

$$\sigma(\varepsilon_i) \approx \frac{\lambda}{x_i}$$

Порядок выполнения теста Голдфелда-Квандта

- 1) все наблюдений упорядочиваются по величине объясняющей переменной;
- 2) упорядоченная выборка разбивается на три подвыборки объемом [n/3];
- 3) средняя треть наблюдений отбрасывается и оцениваются отдельные регрессии для верхней и нижней подвыборок;
- 4) вычисляются дисперсии остатков регрессии для верхней ($_{S_1^2}$) и нижней ($_{S_2^2}$) подвыборок;
- 5) выдвигают основную гипотезу
- Н₀: модель является гомоскедастичной;
- против альтернативной
- Н₁:модель является гетероскедастичной;

Порядок выполнения теста Голдфелда-Квандта (окончание)

•гипотеза Но проверяется с помощью статистики:

$$F = \frac{S_2^2}{S_1^2} \sim \mathbf{F([n/3]-m-1; [n/3]-m-1)}$$

- •при выбранном уровне значимости α строится правосторонняя критическая область, описываемая неравенством: $F > F_{\text{кp}}(\alpha, k_1, k_1)$;
- •вычисляется наблюдаемое значение F-критерия;
- •далее следует выполнить проверку гипотезы H₀ по стандартной схеме.

Тест Глейзера

• Тест Глейзера позволяет обнаружить гетероскедастичность в случае, когда стандартное отклонение случайной компоненты связано со значением X нелинейной зависимостью:

$$\sigma(\varepsilon_i) \approx \alpha + \beta x_i^{\gamma}$$

Порядок выполнения теста Глейзера

- 1) по МНК оценивается линейная регрессия $\hat{y} = \hat{b_0} + \hat{b_1}x$;
- 1) оценки $\hat{\sigma}(\varepsilon_i)$ стандартных отклонений случайной компоненты в каждом наблюдении вычисляются как:

$$\hat{\sigma}(\varepsilon_i) \equiv |e_i| = |y_i - \hat{y}_i|$$

 выбирается набор значений показателя степени γ, например, такой:

$$\gamma = -1; -0.75; -0.5; -0.25; 0.25; 0.5; 0.75; 1; 1.25; 1.5; 1.75; 2$$

1) для каждого γ строится по МНК регрессионная модель вида: $|\hat{e}_i| = \hat{\alpha} + \hat{\beta} x_i^{\gamma}$

Порядок выполнения теста Глейзера (окончание)

- •5) с помощью t- статистики проверяется статистическая значимость каждого коэффициента $\hat{\beta}$;
- 6) если оценка $\hat{\beta}$ окажется статистически значима, то имеет место гетероскедастичность.

Замечание. Если для нескольких значений параметра у получены статистически значимые оценки $\hat{\beta}$, то следует выбрать наилучшую из них (т. е. ту, для которой t-статистика максимальна).

Методы устранения гетероскедастичности.

- Основной метод устранения гетероскедастичности обобщенный метод наименьших квадратов (ОМНК).
- Суть ОМНК минимизация суммы квадратов отклонений, в которой каждое наблюдение присутствует с учетом его "веса".
- Последствия ОМНК получение эффективных оценок для коэффициентов регрессии.

Применение ОМНК

•Пусть в исходной модели: $y_i = b_0 + b_1 x_i + \varepsilon_i \ (i = \overline{1,n})$ имеет место гетероскедастичность, т. е.

$$\sigma^2 \big(\varepsilon_i \big) \neq \sigma^2 \big(\varepsilon_j \big), \, i \neq j$$

Предположим, что дисперсия случайной компоненты в каждом наблюдении известна.

Разделим каждое наблюдение на соответствующее ему значение стандартного отклонения:

$$\frac{y_i}{\sigma(\varepsilon_i)} = \frac{b_0}{\sigma(\varepsilon_i)} + b_1 \frac{x_i}{\sigma(\varepsilon_i)} + \frac{\varepsilon_i}{\sigma(\varepsilon_i)}$$

Положим
$$y_i^* = \frac{y_i}{\sigma(\varepsilon_i)}$$
, $z_i^* = \frac{1}{\sigma(\varepsilon_i)}$, $q_i^* = \frac{x_i}{\sigma(\varepsilon_i)}$ и $\xi_i = \frac{\varepsilon_i}{\sigma(\varepsilon_i)}$.

Тогда преобразованная модель примет вид:

$$y_i^* = b_0 z_i^* + b_1 q_i^* + \xi_i$$

Применение ОМНК (продолжение)

- Легко убедиться, что случайная компонента $\xi_i = \frac{\mathcal{E}_i}{\sigma(\mathcal{E}_i)}$
- в полученной модели имеет нулевое математическое ожидание и единичную дисперсию для всех наблюдений. Действительно,

$$M(\xi_i) = M\left(\frac{\varepsilon_i}{\sigma(\varepsilon_i)}\right) = \frac{1}{\sigma(\varepsilon_i)}M(\varepsilon_i) = \frac{0}{\sigma(\varepsilon_i)} = 0$$

$$D(\xi_i) = D\left(\frac{\varepsilon_i}{\sigma(\varepsilon_i)}\right) = \frac{1}{\sigma^2(\varepsilon_i)}D(\varepsilon_i) = \frac{\sigma^2(\varepsilon_i)}{\sigma^2(\varepsilon_i)} = 1$$

 Следовательно, оценки коэффициентов регрессии можно найти по обычному МНК, минимизируя следующую сумму квадратов отклонений

$$S = \sum_{i=1}^{n} \left(\frac{y_i}{\sigma(\varepsilon_i)} - \frac{\hat{b}_0}{\sigma(\varepsilon_i)} - \hat{b}_1 \frac{x_i}{\sigma(\varepsilon_i)} \right)^2 = \sum_{i=1}^{n} \frac{1}{\sigma^2(\varepsilon_i)} \left(y_i - \hat{b}_0 - \hat{b}_1 x_i \right)^2 \rightarrow \min$$

Применение ОМНК (окончание)

• Замечание. Основная трудность в применении обобщенного (взвешенного) МНК состоит в том, что значения $\sigma(\varepsilon_i)$, как правило, неизвестны. На практике неизвестные значения либо заменяют их оценками, либо подбирают некоторую величину, пропорциональную в каждом наблюдении стандартному отклонению $\sigma(\varepsilon_i)$.

Заключение

- Построение любой эконометрической модели должно включать проверку выполнимости второго условия Гаусса-Маркова.
- Проверка осуществляется с помощью статистических тестов.
- При нарушении второго условия Гаусса-Маркова следует предпринять шаги к устранению гетероскедастичности.

Заключение

Всякая наука только тогда достигает своего совершенства, когда она породнится с математикой.

И. Кант