МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ВЕДЕНИЯ БОЕВЫХ ДЕЙСТВИЙ С УЧЕТОМ СИЛ АВИАЦИИ И ПВО

подготовили: Сержант Мусатов Игорь Андреевич Курсант Корнев Артём Аркадьевич

Цели работы

- Изучить труды английского математика Ф.
 У.Ланчестера;
- Составить общую систему уравнений, которые позволяют смоделировать реальные боевые действия с учетом авиации и сил ПВО;
- Смоделировать реальную ситуацию вооруженного столкновения, определить победившую сторону.

Фредерик Уильям Ланчестер (1868 — 1946)

английский эрудит и инженер, внесший значительный вклад в автомобилестроение, аэродинамику

Уравнение Ланчестера

 Ω бщая скорость изменения x(t) задается уравнением

$$\frac{dx(t)}{dt} = -(OLR + CLR) + RR$$

Полученная нами система

$$\frac{dx(t)}{dt} = -a \cdot x(t) - b \cdot y(t) + P(t)$$

$$\frac{dy(t)}{dt} = -c \cdot x(t) - d \cdot y(t) + Q(t)$$
$$x(0) = x_0$$
$$y(0) = y_0$$

Коэффициенты эффективности b и c

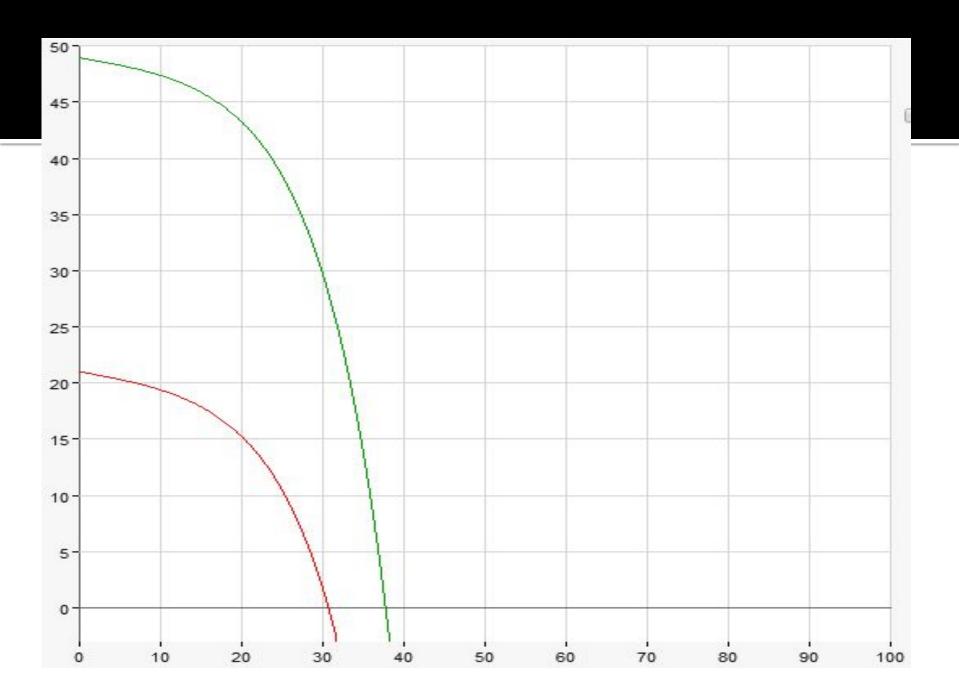
$$b = r_y \cdot p_y \qquad c = r_x \cdot p_x$$

Где r_x и r_y – коэффициенты огневой мощи сторон x и y, а p_x и p_y - это вероятности того, что каждый из выстрелов со стороны x и y соответственно окажется метким

$$\frac{dx(t)}{dt} = -a \cdot x(t) - r_y \cdot p_y \cdot y(t)$$

$$\frac{dy(t)}{dt} = -r_x \cdot p_x \cdot x(t) - d \cdot y(t)$$
$$x(0) = x_0$$
$$y(0) = y_0$$

Данные для задачи


Характеристика	Атакующая сторона (авиация) Х	Обороняющаяся сторона (войска ПВО) Ү
Численность	21	49
Огневая мощь	0,4	0,8
Вероятность попадания	0,32	0,18
Коэффициент небоевых потерь	0,023	0,01

 $\frac{dx(t)}{dt} = -0.023 \cdot x(t) - 0.8 \cdot 0.18 \cdot y(t)$

$$\frac{dy(t)}{dt} = -0.4 \cdot 0.32 \cdot x(t) - 0.01 \cdot y(t)$$
$$x(0) = 21$$
$$y(0) = 49$$

Полученные результаты

$$x(t) = e^{-0.15 \cdot t} \cdot (0.53 - 0.53 \cdot e^{0.27 \cdot t}) + 21$$

$$y(t) = e^{-0.15 \cdot t} \cdot (0.47 - 0.53 \cdot e^{0.27 \cdot t}) + 49$$

