BBA182 Applied Statistics
 Week 4 (1)Measures of variation

DR SUSANNE HANSEN SARAL
EMAIL: SUSANNE.SARAL@OKAN.EDU.TR
HTTPS://PIAZZA.COM/CLASS/IXRJ5MMOX1U2T8?CID=4\#
WWW.KHANACADEMY.ORG

Alternative way to calculate the IQR

Khan Academy

(i) Webmail - Okan Ünivers \times (0) Susanne Hansen Saral $-\times$ Interquartile range (IQR) $\times \square$
$\leftarrow \rightarrow$ C Secure | https://www.khanacademy.org/mission/probability/task/5195088629858304
::: Apps Save to Mendeley \star Bookmarks \boldsymbol{P} https://book.flypgs.co (1) International Flights, (o) Webmail - Okan U

* Google Çeviri El akiek iser-

Interquartile range (IQR)

Practice finding the interquartile range (IQR) of a data set.

Get 5 questions correct in a row 00000

A family of bears is going to a movie. The following data points represent the ticket and candy price (in dollars) for each bear.
Sort the data from least to greatest.

4	4	3	0	$7 \frac{1}{2}$	$2 \frac{1}{2}$	$1 \frac{1}{2}$	7	4

Find the interquartile range (IQR) of the data set.
dollars

Show scratchpad

Five-Number Summary of a data

 etIn describing numerical data, statisticians often refer to the five-number summary. It refers to five the descriptive measures we have looked at:
minimum value
first quartile
median
third quartile
maximum value

$$
\text { minimum }<Q_{1}<\text { median }<Q_{3}<\text { maximum }
$$

It gives us a good idea where the data is located and how it is spread in the data set

Five-Number Summary: Example

| Sample Ranked Data: | 6 | 7 | 8 | 9 | 10 | 11 | 11 | 12 | 13 | 14 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
\begin{aligned}
\text { minimum } & <Q_{1}<\text { median }<Q_{3}<\text { maximum } \\
6 & <7.75<10.5<12.25<14
\end{aligned}
$$

Exercise

Consider the data given below:

$$
\begin{array}{lllllllll}
110 & 125 & 99 & 115 & 119 & 95 & 110 & 132 & 85
\end{array}
$$

a. Compute the mean.
b. Compute the median.
c. What is the mode?
d. What is the shape of the distribution?
e. What is the lower quartile, Q1?
f. What is the upper quartile, Q3?
g. Indicate the five number summary

Exercise

Consider the data given below.

85	95	99	110	110	115	119	125	132

a. Compute the mean. 110
b. Compute the median. 110
c. What is the mode? 110
d. What is the shape of the distribution? Symmetric, because mean = median=mode
e. What is the lower quartile, Q1? 97
f. What is the upper quartile, Q3? 122
g. Indicate the five number summary $85<97<110<122<132$

Five number summary and Boxplots

OKAN ÜNIVERSITESi
 - istanbul

Boxplot is created from the five-number summary

A boxplot is a graph for numerical data that describes the shape of a distribution, in terms of the 5 number summary.

It visualizes the spread of the data in the data set.

Five number summary and Boxplots

OKAN ÜNIVERSITESI

Boxplot is created from the five-number summary

The central box shows the middle half of the data from Q_{1} to Q_{3}, (middle 50\% of the data) with a line drawn at the median

Two lines extend from the box. One line is the line from Q_{1} to the minimum value, the other is the line from Q_{3} to the maximum value

A boxplot is a graph for numerical data that describes the shape of a distribution, like the histogram

Five number summary and boxplot

1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,5

Minimum number $=1$
Maximum number $=5$
$Q_{1}=1$
$Q_{2}=2.5$
Median $=2$

Five number summary: $1=1<2<2.5<5$ (plot a dot chart, then boxplot)

Five number summary and boxplot

$$
1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,120
$$

Minimum number $=1$
Maximum number $=120$
$Q_{1}=1$
$Q_{2}=2.5$
Median = 2
Five number summary: $1=1<2<2.5<120$

Boxplot

OKAN ÜNiVERSITESi

- ISTANBUL

The plot can be oriented horizontally or vertically
Example:

12	30	45	57	70

Gilotti's Pizza Sales in \$100s

OKAN ÜNIVERSITESI

Table 2.2 Gilotti's Pizzeria Sales (in \$100s)

Location 1	Location 2	Location 3	Location 4
6	1	2	22
8	19	3	20
10	2	25	10
12	18	20	13
14	11	22	12
9	10	19	10
11	3	25	11
7	17	20	9
13	4	22	10
11	17	26	8

Gilotti's Pizza Sales

okan üniversitesi What are the shapes of the distribution of the four data set?

Table 2.3 Gilotti's Pizzeria Sales

VARIABLE	MEAN	MIN.	Q_{1}	MEDIAN	Q_{3}	MAX.	IQR	RANGE
Location 1	10.1	6.0	7.75	10.5	12.25	14.0	4.5	8.0
Location 2	10.2	1.0	2.75	10.5	17.25	19.0	14.5	18.0
Location 3	18.4	2.0	15.00	21.0	25.00	26.0	10.0	24.0
Location 4	12.5	8.0	9.75	10.5	14.75	22.0	5.0	14.0

Copyright ©2013 Pearson Education, publishing as Prentice Hall

OKAN ÜNIVERSITESI

Gilotti's Pizza Sales - boxplot
Boxplots of Gilotti's Pizzeria Sales in Four Locations

Gilotti's Pizza Sales in \$100s

OKAN ÜNIVERSITESI

Table 2.2 Gilotti's Pizzeria Sales (in \$100s)

Location 1	Location 2	Location 3	Location 4
6	1	2	22
8	19	3	20
10	2	25	10
12	18	20	13
14	11	22	12
9	10	19	10
11	3	25	11
7	17	20	9
13	4	22	10
11	17	26	8

Data set 1: $23 \quad 19 \quad 21 \quad 18 \quad 24 \quad 21 \quad 23$

Data set 2: $23 \quad 35 \quad 19 \quad 7 \quad 21 \quad 24 \quad 22$

Mean: 21.3

Mean: 21.6

Which of these two data sets has the highest spread/variation? Why?

Average distance to the mean: Standard deviation

Most commonly used measure of variability

Measures the standard (average) distance of each individual data point from the mean.

Calculating the average distance to the mean

Our goal is to measure the standard distance of each single data in the data set from the mean.
$1^{\text {st }}$ step: Calculate the mean of the data set $\quad \mu=\frac{\sum x_{i}}{N}$
$2^{\text {nd }}$ step: Calculate the standard distance from the mean is to determine distance from the mean for each individual score:

$$
\text { deviation score }=X-\mu
$$

Where x is the value of each individual score and μ the population mean.

Calculating the average distance to the mean

OKAN ÜNIVERSITESI

Step 3: Once we have calculated the distance between each single score and the mean, we add up the those deviation scores. Our mean in this example is $\mu=3$.

Example: We have a set of $4 \operatorname{scores}\left(x_{1}, x_{2, . .} x_{i,}\right): 8,1,3,0$,

	X	$X-\mu$	
1	8	5	$(=8-3)$
2	1	-2	$(=1-3)$
3	3	0	$(=3-3)$
4	0	-3	$(=0-3)$
ΣX	12	0	$=\sum(X-\mu)$

OKAN ÜNIVERSITESi

Calculating the average distance to the mean

ISTANBUL

Notice that the deviation score adds up to zero!

This is not surprising because the mean serves as balance point (middle point) for the distribution. (!Remember: In a symmetric distribution the mean and the median are identical)

The distances of the single score above the mean equal the distances of the single scores below the mean.

Therefore the deviation score always adds up to zero.

OKAN ÜNIVERSITESi

Calculating the average distance to the mean

Step 3：The solution is to get rid of the＋and－which causes the cancelling out effect．We square each deviation score and sum them up

	X	$\mathrm{X}-\mu$	$(\mathrm{X}-\mu)^{2}$		
1	8	5	$(=8-$	25	
2	1	-2	阬 $1-$		
3	3	0	际3－ $3-$	0	
4	0	-3	际 $0-$		
	12	0	$3)$		
	38				

Population Variance, $\boldsymbol{\sigma}^{\mathbf{2}}$

Average of squared deviations from the mean

- Population variance:

$$
\sigma^{2}=\frac{\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}{N}
$$

Where:

$$
\begin{aligned}
& \mu=\text { population mean } \\
& N=\text { population size } \\
& x_{i}=i^{\text {th }} \text { value of the variable } x
\end{aligned}
$$

Sample Variance, $\boldsymbol{s}^{\mathbf{2}}$

OKAN ÜNIVERSITESI

Average of squared deviations from the mean

Sample variance:

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}
$$

Where:

$$
\begin{aligned}
& \bar{X}=\text { arithmetic mean } \\
& n=\text { sample size } \\
& X_{i}=i^{\text {th }} \text { value of the variable } X
\end{aligned}
$$

Population Standard Deviation, $\boldsymbol{\sigma}$

Most commonly used measure of variation in a population
Shows variation about the mean in a symmetric data set
Has the same units as the original data,
Example: If original data is in meters than the standard deviation will also be in meters.

- Population standard deviation:

$$
\sigma=\sqrt{\frac{\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}{N}}
$$

Sample Standard Deviation, s

Most commonly used measure of variation in a sample
Shows variation about the mean
Has the same units as the original data

- Sample standard deviation:

$$
S=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}
$$

Calculation Example:

 Sample Standard Deviation, s$$
S=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}
$$

$$
\begin{aligned}
& \text { Sample } \\
& \text { Data }\left(x_{i}\right) \text { : }
\end{aligned}
$$

| 10 | 12 | 14 | 15 | 17 | 18 | 18 | 24 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
\mathrm{n}=8 \quad \text { Mean }=\overline{\mathrm{x}}=16
$$

$$
s=\sqrt{\frac{(10-\bar{X})^{2}+(12-\bar{x})^{2}+(14-\bar{x})^{2}+\square+(24-\bar{x})^{2}}{n-1}}
$$

$$
=\sqrt{\frac{(10-16)^{2}+(12-16)^{2}+(14-16)^{2}+\square+(24-16)^{2}}{8-1}}
$$

$$
=\sqrt{\frac{130}{7}}=4.3095 \Longrightarrow \begin{aligned}
& \text { A measure of the "average" distance } \\
& \text { about the mean }
\end{aligned}
$$

Class example

Calculating sample variance and standard deviation

Compute the variance, s^{2}, and standard deviation, s, of the following sample data:

$$
\begin{array}{llllllll}
6 & 8 & 7 & 10 & 3 & 5 & 9 & 8
\end{array}
$$

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}
$$

When we analyze the variance formula we, see that we need to calculate the sample mean, \bar{X}, first:

$$
\bar{X}=\frac{6+8+7+10+3+5+9+8}{8}=\frac{56}{8}=7
$$

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}
$$

The mean $=7$

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1} \quad S=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}
$$

687103598

Class example (continued)

Calculating the sample variance:
687103598

$$
\begin{aligned}
& s^{2}=\frac{(6-7)^{2}+(8-7) 2+(7-7) 2+(10-7) 2+(3-7) 2+(5-7) 2+(9-7) 2+(8-7) 2}{8-1} \\
& S^{2}=\frac{1+1+0+9+16+4+4+1}{8-1} \\
& S^{2}=\frac{36}{8-1}=5.14
\end{aligned}
$$

Sample standard deviation, $\mathbf{s}=\sqrt{5.14}=2.27$ (average distance to the mean of 7)

