Методы аппроксимации функций

1. Метод наименьших квадратов

1.1Аппроксимация линейной зависимостью

Метод наименьших квадратов (МНК) минимизирует среднеквадратичные невязки в узлах сетки. Рассмотрим МНК на примере построения линейной аппроксимационной зависимости для табличной функции.

X _i	\mathbf{x}_0	X ₁	X ₂	 X _n
y _i	y ₀	y ₁	y ₂	 y _n

Результирующая функция должна удовлетворять зависимости:

$$y(x)=a \cdot x+b (1)$$

Подставляя табличную функцию в зависимость (1) имеем систему (n + 1) уравнений с двумя неизвестными:

$$a \cdot x_0 + b = y_0$$

$$a \cdot x_1 + b = y_1$$

$$a \cdot x_2 + b = y_2$$

$$a \cdot x_n + b = y_n$$
 (2)

Введем невязку в узлах сетки как квадрат разностей левой и правой частей системы (2): $\mathbf{r}_i = (\mathbf{a} \cdot \mathbf{x}_i + \mathbf{b} - \mathbf{y}_i)^2$ (3) Тогда задаче нахождения коэффициентов а и b ставится в соответствие задача минимизации суммы невязок (3): $\sum_{i=0}^{n} r_i \to min$ (4)

Дифференцируя функцию (4) по независимым переменным а и b, получаем систему из двух уравнений: $\begin{cases} \sum_{i=0}^n 2 \cdot (a \cdot x_i + b - y_i) \cdot x_i = 0 \\ \sum_{i=0}^n 2 \cdot (a \cdot x_i + b - y_i) \cdot 1 = 0 \end{cases}$ (5)

Приводя к стандартному для СЛАУ виду,

имеем:
$$\begin{cases} a \sum_{i=0}^{n} x_i^2 + b \sum_{i=0}^{n} x_i = \sum_{i=0}^{n} y_i * x_i \\ a \sum_{i=0}^{n} x_i + b(n+1) = \sum_{i=0}^{n} y_i \end{cases}$$
(6)

Или в матричной форме: Y=B·X (7) Где:

$$Y = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix} X = \begin{pmatrix} 1 & x_0 \\ 1 & x_1 \\ 1 & x_2 \\ \dots & \dots \\ 1 & x_n \end{pmatrix} B = \begin{pmatrix} b \\ a \end{pmatrix}$$
 (8)

Решением системы (7) будет вектор: $\mathbf{B} = (\mathbf{X}^T \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^T \cdot \mathbf{Y}$

1.2 Аппроксимация нелинейной зависимостью.

Если принять более общий случай, когда конкретный вид аппроксимирующей функции не задан, т.е.: **у(x)=f(x)** (9)

Условие минимизации среднеквадратичной невязки запишется в виде:

$$\sum_{i=0}^{n} (f(x_i) - y_i)^2 \rightarrow min$$
 (10)

Рассмотрим случай когда искомая функция представляет линейную комбинацию базисных функций: $\mathbf{f}(\mathbf{x}) = \mathbf{c}_0 \cdot \boldsymbol{\varphi}_0(\mathbf{x}) + \mathbf{c}_1 \cdot \boldsymbol{\varphi}_1(\mathbf{x}) + ... + \mathbf{c}_m \cdot \boldsymbol{\varphi}_m(\mathbf{x})$ (11)

Набор базисных функций $\{ \boldsymbol{\varphi}_i(\mathbf{x}) \}_{i}^{\mathsf{m}} = \mathbf{0}$ задан изначально, и задача сводится к определению коэффициентов $\{ \mathbf{c}_i \}_{i}^{\mathsf{m}} = \mathbf{0}$.

Аналогично предыдущему пункту, условие минимума функции нескольких переменных сводится к условию гладкого экстремума, что для задачи (10-11) приводит к системе уравнений:

$$\left(\sum_{i=0}^{n} \varphi_{0}(x_{i}) \left(c_{0} \varphi_{0}(x_{i}) + c_{1} \varphi_{1}(x_{i}) + \dots + c_{m} \varphi_{m}(x_{i}) - y_{i}\right) = 0 \right) \\
\sum_{i=0}^{n} \varphi_{1}(x_{i}) \left(c_{0} \varphi_{0}(x_{i}) + c_{1} \varphi_{1}(x_{i}) + \dots + c_{m} \varphi_{m}(x_{i}) - y_{i}\right) = 0 \\
\sum_{i=0}^{n} \varphi_{m}(x_{i}) \left(c_{0} \varphi_{0}(x_{i}) + c_{1} \varphi_{1}(x_{i}) + \dots + c_{m} \varphi_{m}(x_{i}) - y_{i}\right) = 0$$
(12)

Переходя к скалярным произведениям имеем:

$$\begin{cases}
c_{0} \cdot (\varphi_{0}, \varphi_{0}) + c_{1} \cdot (\varphi_{0}, \varphi_{1}) + \dots + c_{m} \cdot (\varphi_{0}, \varphi_{m}) = (\varphi_{0}, y) \\
c_{0} \cdot (\varphi_{1}, \varphi_{0}) + c_{1} \cdot (\varphi_{1}, \varphi_{1}) + \dots + c_{m} \cdot (\varphi_{1}, \varphi_{m}) = (\varphi_{1}, y) \\
c_{0} \cdot (\varphi_{m}, \varphi_{0}) + c_{1} \cdot (\varphi_{m}, \varphi_{1}) + \dots + c_{m} \cdot (\varphi_{m}, \varphi_{m}) = (\varphi_{m}, y)
\end{cases}$$
(13)

Форма записи (13) удобна тем, что ее можно использовать как для аппроксимации как сеточной, так и непрерывной функции.

Для сеточной функции скалярные произведения вычисляются по формуле:

$$(\varphi_k, \varphi_j) = \sum_{i=0}^n \varphi_k(x_i) - \varphi_j(x_i)$$
 (14)

Для непрерывной функции, аппроксимируемой на интервале x∈[a,b]:

$$(\varphi_k, \varphi_j) = \int_a^b \varphi_k(x) - \varphi_j(x) dx \quad (15)$$

Из свойств скалярных произведений вытекает одно важное следствие — если система базисных функций $\{\boldsymbol{\varphi}_i(\mathbf{x})\}_{i}^{m} = \mathbf{0}$ ортогональна, т.е. удовлетворяет условию: $(\boldsymbol{\varphi}_k, \boldsymbol{\varphi}_i) = \mathbf{0}, \mathbf{k} \neq \mathbf{j}$ (16)

Все коэффициенты зависимости (11) можно найти в явном виде:

$$c_{0} = \frac{\left(\varphi_{0}, y\right)}{\left|\left|\varphi_{0}\right|\right|^{2}}$$

$$c_{1} = \frac{\left(\varphi_{1}, y\right)}{\left|\left|\varphi_{1}\right|\right|^{2}}$$

$$c_{m} = \frac{\left(\varphi_{m}, y\right)}{\left|\left|\varphi_{m}\right|\right|^{2}}$$

$$(17)$$

Такие коэффициенты называются коэффициентами Фурье, а комбинация базисных функций (11) – обобщенным многочленом Фурье.

2. Линейная аппроксимация

Рассмотрим в качестве эмпирической формулы линейную функцию:

$$\varphi(x, a, b)=xa + b$$

Сумма квадратов отклонений запишется следующим образом:

$$S = S(a,b) = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} [\varphi(x_i) - y_i]^2 = \sum_{i=1}^{n} (ax_i + b - y_i)^2 \to \min.$$

Для нахождения а и b необходимо найти минимум функции S(a,b). Необходимое условие существования минимума для функции S:

$$\begin{cases} \frac{\partial S}{\partial a} = 0 \\ \frac{\partial S}{\partial b} = 0 \end{cases} \quad \text{или} \quad \begin{cases} 2\sum_{i=1}^{n} (ax_i + b - y_i)x_i = 0 \\ 2\sum_{i=1}^{n} (ax_i + b - y_i) = 0. \end{cases}$$

Упростим полученную систему:

$$\begin{cases} a \sum_{i=1}^{n} x_i^2 + b \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i y_i \\ a \sum_{i=1}^{n} x_i + b n = \sum_{i=1}^{n} y_i. \end{cases}$$

Введем обозначения:

$$SX = \sum_{i=1}^{n} x_i$$
, $SXX = \sum_{i=1}^{n} x_i^2$, $SY = \sum_{i=1}^{n} y_i$, $SXY = \sum_{i=1}^{n} x_i y_i$.

Получим систему уравнений для нахождения параметров а и b: {aSXX+bSX=SXY aSX+bn=SY} (18)

из которой находим:
$$a = \frac{SXY*n - SX*SY}{SXX*n - SX*SX}$$
, $b = \frac{SXX*SY - SX*SXY}{SXX*n - SX*SX}$

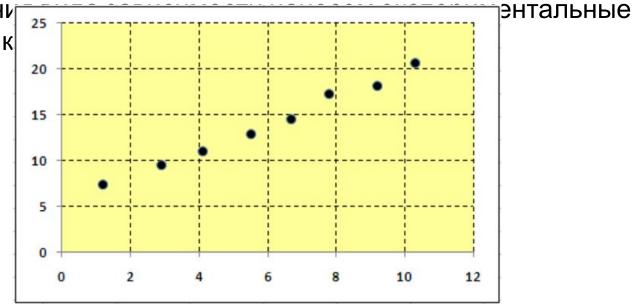
Пример. Пусть, изучая неизвестную функциональную зависимость между х и у, в результате серии экспериментов, была получена таблица значений (табл. 1). Необходимо найти приближенную функциональную зависимость и определить значения параметров аппроксимирующей функции.

Данные эксперимента

Х	1,2	2,9	4,1	5,5	6,7	7,8	9,2	10,3
У	7,4	9,5	11,1	12,9	14,6	17,3	18,2	20,7

Таблица 1.

Для определени точки на график



Далее, используя метод наименьших квадратов, найдем значения коэффициентов аппроксимирующей функции: а и b. Для этого вычислим:

$$SX = \sum_{i=1}^{n} x_i = 1, 2 + 2, 9 + 4, 1 + 5, 5 + 6, 7 + 7, 8 + 9, 2 + 10, 3 = 47, 7;$$

$$SXX = \sum_{i=1}^{n} x_i^2 = 1, 2^2 + 2, 9^2 + 4, 1^2 + 5, 5^2 + 6, 7^2 + 7, 8^2 + 9, 2^2 + 10, 3^2 = 353, 37;$$

$$SY = \sum_{i=1}^{n} y_i = 7, 4 + 9, 5 + 11, 1 + 12, 9 + 14, 6 + 17, 3 + 18, 2 + 20, 7 = 111, 7;$$

$$SXY = \sum_{i=1}^{n} x_i y_i = 1, 2 \cdot 7, 4 + 2, 9 \cdot 9, 5 + 4, 1 \cdot 11, 1 + 5, 5 \cdot 12, 9 + 6, 7 \cdot 14, 6 + 47, 8 \cdot 17, 3 + 9, 2 \cdot 18, 2 + 10, 3 \cdot 20, 7 = 766, 3.$$

Система уравнений (18) для нахождения параметров а и b будет иметь (353,37a+ 47,7b= 766,3 вид: { 47,7a+ 8b= 111,7.

Решая систему, получим значения коэффициентов: а = 1,4543 и b=5,2911. Проверим правильность выбора линейной модели. Для этого вычислим значения аппроксимирующей функции f = 1,4543x + 5,2911 и внесем полученные значения в табл. 2.

Результаты вычислений

Таблица2

№ пп	1	2	3	4	5	6	7	8
х	1,2	2,9	4,1	5,5	6,7	7,8	9,2	10,3
У	7,4	9,5	11,1	12,9	14,6	17,3	18,2	20,7
F = ax + b	7,0363	9,5086	11,2538	13,2899	15,0351	16,6348	18,6709	20,2707
$arepsilon_i$	-0,3637	0,0086	0,1538	0,3899	0,4351	-0,6652	0,4709	-0,4293

Из таблицы видно, что значения аппроксимирующей функции приблизительно совпадают с Y для всех точек X. Следовательно, дела- ем вывод: исследуемая функциональная зависимость может быть приближенно описана линейной моделью f = 1,4543x + 5,2911. Определим меру отклонения S: $S = \sum_{i=1}^{n} \varepsilon_i^2 = 1,3459$

Вычисленное значение S (небольшое $\to min$), что еще раз подтверждает правильность выбора модели

3. КВАДРАТИЧНАЯ АППРОКСИМАЦИЯ

Рассмотрим в качестве эмпирической формулы квадратичную функцию:

$$\varphi(x, a_0, a_1, a_2) = a_2 x^2 + a_1 x + a_0$$

Сумма квадратов отклонений запишется следующим образом:

S=S(
$$a_0, a_1, a_2$$
)= $\sum_{i=1}^{n} (a_2 x^2 + a_1 x + a_0 - y_i)^2 \rightarrow min$

Приравниваем к нулю частные производные S по неизвестным параметрам:

$$\begin{cases} \frac{\partial S}{\partial a_0} = 2\sum_{i=1}^n a_2 x_i^2 + a_1 x_i + a_0 - y_i = 0\\ \frac{\partial S}{\partial a_1} = 2\sum_{i=1}^n (a_2 x_i^2 + a_1 x_i + a_0 - y_i) x_i = 0\\ \frac{\partial S}{\partial a_2} = 2\sum_{i=1}^n (a_2 x_i^2 + a_1 x_i + a_0 - y_i) x_i^2 = 0 \end{cases}$$

Введем обозначения:

$$\begin{split} X_1 &= \sum_{i=1}^n x_i, \quad X_2 = \sum_{i=1}^n x_i^2, \quad X_3 = \sum_{i=1}^n x_i^3, \quad X_4 = \sum_{i=1}^n x_i^4, \\ Z_1 &= \sum_{i=1}^n y_i, \quad Z_2 = \sum_{i=1}^n x_i y_i, \quad Z_3 = \sum_{i=1}^n x_i^2 y_i. \end{split}$$

Получим систему уравнений для нахождения параметров a_0 , a_1 , a_2 :

$$\begin{cases} a_0n+a_1X_1+a_2X_2=Z_1\\ a_0X_1+a_1X_2+a_2X_3=Z_2\\ a_0X_2+a_1X_3+a_2X_4=Z_3\\ \text{где} \end{cases}$$
 где

$$\Delta_{0} = \det \begin{pmatrix} Z_{1} & X_{1} & X_{2} \\ Z_{2} & X_{2} & X_{3} \\ Z_{3} & X_{3} & X_{4} \end{pmatrix} \quad \Delta_{1} = \det \begin{pmatrix} n & Z_{1} & X_{2} \\ X_{1} & Z_{2} & X_{3} \\ X_{2} & Z_{3} & X_{4} \end{pmatrix}$$

$$\Delta_{2} = \det \begin{pmatrix} n & X_{1} & Z_{1} \\ X_{1} & X_{2} & Z_{2} \\ X_{2} & X_{3} & Z_{3} \end{pmatrix} \quad \Delta_{2} = \det \begin{pmatrix} n & X_{1} & X_{2} \\ X_{1} & X_{2} & X_{3} \\ X_{2} & X_{3} & X_{4} \end{pmatrix}$$