

методы решения логарифмических уравнений

Методическая разработка учащихся 10 класса МОУ «Бельская СОШ»

г. Белого Тверской области

Основные методы решений логарифмических уравнений

Определение

Логарифмом положительного числа b по основанию a, где a>0р $\neq 1$, называется показатель степени, в которую надо возвести a, чтобы получить b.

1. <u>Использование определения</u> <u>логарифма.</u>

$$log_{\alpha} f(x) = c \longleftrightarrow f(x) = a^{c}$$

Пример 1.

$$log (x-4) = 2$$

 $x-4=5$
 $x-4=25$
 $x=29$

Ответ: 29.

2. Метод потенцирования.

Пример 2.

$$\lg (x^2-9) = \lg (4x+3)$$

$$x^2-9 = 4x+3$$

$$x^2-4x-12=0$$

$$x=6$$

$$x=-2$$

$$x=-2$$
 - не входит в ОДЗ
Ответ: 6.

$$\begin{cases}
 x > \frac{3}{4} \\
 x > 0 \\
 x > 3
\end{cases}$$
ОДЗ:
$$\begin{cases}
 4x + 3 > 0 \\
 x^2 - 9 > 0
\end{cases}$$

$$\begin{cases}
 x > \frac{3}{4} \\
 x < -3 \\
 x > 3
\end{cases}$$

3. Введение новой переменной.

Пример 3.

$$\log_{\frac{1}{4}}x - 2\log_{\frac{1}{4}}x - 3 = 0$$
 ОДЗ: $x > 0$

Пусть $\log_4 x = t$

$$t^2 - 2t - 3 = 0$$

$$\begin{bmatrix} t = 3 \\ t = -1 \end{bmatrix} \begin{bmatrix} \log_4 x = 3 \\ \log_4 x = -1 \end{bmatrix} \begin{bmatrix} x = 64 \\ x = \frac{1}{4} \end{bmatrix}$$

$$x = 64$$

$$x = \frac{1}{4}$$

OTBET: $\frac{1}{4}$; 64.

4. <u>Приведение логарифмов к</u> одному основанию.

Формулы перехода:

1)
$$\log_a b = \frac{\log_c b}{\log_c a}$$
 2) $\log_a b = \frac{1}{\log_b a}$

Пример 4.

$$\log_3 x - 6\log_x 3 = 1$$
 ОДЗ: $x > 0, x \ne 1$

$$\log_3 x - \frac{6}{\log_3 x} = 1$$

Пусть
$$\log_3 x = t$$

 $t - \frac{6}{t} = 1$
 $t^2 - t - 6 = 0$

$$\begin{bmatrix} t = -2 \\ t = 3 \end{bmatrix} \begin{bmatrix} \log_3 x = -2 \\ \log_3 x = 3 \end{bmatrix} \begin{bmatrix} x = \frac{1}{9} \\ x = 27 \end{bmatrix}$$

Ответ: $\frac{1}{9}$; 27.

5. Метод логарифмирования.

Пример 5.

$$x^{\log_2 x} = 64x$$

логарифмируем обе части уравнения по основанию 2

$$\log_{2} x^{\log_{2} x} = \log_{2} 64x$$

$$\log_{2} x \cdot \log_{2} x = \log_{2} 64x$$

$$\log_{2}^{2} x = \log_{2} 64 + \log_{2} x$$

$$\log_{2}^{2} x - \log_{2} x - 6 = 0$$

Пусть
$$\log_2 x = t$$

 $t^2 - t - 6 = 0$

$$\begin{bmatrix} t = -2 \\ t = 3 \end{bmatrix} \begin{bmatrix} \log_2 x = -2 \\ \log_2 x = 3 \end{bmatrix} \begin{bmatrix} x = \frac{1}{4} \\ x = 8 \end{bmatrix}$$

Ответ: $\frac{1}{4}$; 8.

6. Применение формулы

$$a^{\log_c b} = b^{\log_c a}$$

Пример 6.

$$9^{\log_3 \lg x} = 2\lg x + 3$$

OД3:
$$\begin{cases} x > 0 & \begin{cases} x > 0 \\ \lg x > 0 \end{cases} & \begin{cases} x > 0 \\ x > 1 \end{cases}$$

$$(\lg x)^{\log_3 9} = 2\lg x + 3$$

$$\lg^2 x - 2\lg x - 3 = 0$$

Пусть
$$\lg x = t$$

$$t^2 - 2t - 3 = 0$$

$$\begin{bmatrix} t = -1 \\ t = 3 \end{bmatrix} \begin{bmatrix} \lg x = -1 \\ \lg x = 3 \end{bmatrix} \begin{bmatrix} x = 0,1 \\ x = 1000 \end{bmatrix}$$
 $x = 0,1$ - не входит в ОДЗ

$$\begin{vmatrix} x = 0.1 \\ x = 1000 \end{vmatrix}$$

Каждому уравнению поставьте в соответствие метод его решения

$$\log_3 x = 2$$

метод логарифмирования

$$\log_6(2x-9) = \log_6(x-3)$$

решение по
$$a^{\log_c b} = b^{\log_c a}$$

$$log_{0,1}^2 x - 5 log_{0,1} x + 6 = 0$$

метод потенцирования

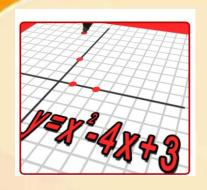
$$x^{\log_2 x} = 16$$

по определению логарифма

$$x^{\lg 9} + 9^{\lg x} = 6$$

метод подстановки

Функциональные методы решения логарифмических уравнений



Использование области допустимых значений уравнения

Определение

Областью допустимых значений уравнения называется общая область определения всех функций, входящих в уравнение

Утверждение1

Если область допустимых значений уравнения пустое множество, то уравнение не имеет корней.

Например:

$$\log_{8}(2x - 4) = \log_{\frac{1}{2}}(1 - x)$$

ОДЗ
$$\begin{cases} 2x-4>0 \\ 1-x>0 \end{cases} \leftrightarrow \begin{cases} x>2 \\ x<1 \end{cases} x \in \emptyset$$

Ответ: корней нет.

Утверждение 2.

Если область допустимых значений уравнения состоит из конечного числа значений, то корни уравнения содержатся среди этих значений.

Это условие является необходимым, но не является достаточным.

Поэтому необходима проверка.

Пример.

$$\sqrt{4-4^{x^2}} + \sqrt[4]{x^6 - 1} < x - \log_3(2 + x^4)$$

ОДС
$$\begin{cases} 4-4^{x^2} \ge 0 \\ x^6-1 \ge 0 \end{cases} \leftrightarrow \begin{cases} -1 \le x \le 1 \\ x \le -1 \\ x \ge 1 \end{cases} \leftrightarrow \begin{bmatrix} x=1 \\ x=-1 \end{cases}$$

Проверка:

При x = -1 получаем 0=2. Равенство неверно. Значит x = -1 не является корнем уравнения.

При x=1 получаем 0=0. Значит x=1 - корень уравнения.

Ответ:1

Алгоритм решения

- 1) Находим ОДЗ уравнения.
- 2) Если ОДЗ пустое множество, то уравнение не имеет корней.
 - Если ОДЗ конечное множество значений, то эти значения надо подставить в уравнение.

Использование монотонности функций.

Теорема.

Если функция f(x) монотонна на некотором промежутке, то уравнение f(x) = c имеет на этом промежутке не более одного корня.

Пример:

$$\log_3 x + \log_8 (5 + x) = 2$$
ОДЗ:
$$\begin{cases} x > 0 \\ 5 + x > 0 \end{cases}$$

Подбором находим корень уравнения х = 3.

Т.к. функция $f(x) = \log_3 x + \log_8 (5 + x) -$ есть сумма двух возрастающих функций, то она возрастающая.

Значит тогда данное уравнение имеет единственный корень.

Ответ: 3.

Теорема.

Если на некотором промежутке функция f(x) возрастает, а функция g(x) убывает, то уравнение f(x) = g(x) имеет на этом промежутке не более одного корня.

Пример:

$$\log_{0.5} 8/x = 2 - 2^x$$

OД3: x > 0

Подбором находим корень уравнения x = 2.

Функции: $y_1(x) = 8/x$ и $y_2(x) = \log_{0.5} x -$ убывающие

Функция $f(x) = y_1(y_2(x)) = \log_{0.5} 8/x$ - возрастающая (как убывающая функция от убывающей)

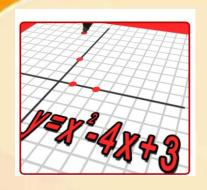
Функция $g(x) = 2 - 2^{x} - y$ бывающая

Тогда данное уравнение имеет единственный корень.

Ответ: 2

Алгоритм решения

- Найти ОДЗ.
- Подбором найти корень уравнения.
- С помощью монотонности функции доказать, что корень единственный.



Использование множества значений (ограниченности) функций

f(x) и g(x)- элементарные функции, E(f) и E(g) – множества значений этих функций.

Утверждение 1.

Если пересечение множеств значений функций f(x) и g(x) пусто ($E(f) \cap E(g) = \emptyset$), то уравнение f(x) = g(x) не имеет корней.

Пример: $-x^2-7=|\log_9(x-1)|$

Рассмотрим функции $f(x) = -x^2 - 7$ и $g(x)_{|\log_9(x-1)|}$ Найдём их области значении.

E(f):

$$x^2 \ge 0$$
$$-x^2 \le 0$$
$$-x^2 \le -7$$

$$\frac{\mathsf{E}(\mathsf{g})}{|\log_9(x-1)|} \ge \mathbf{O}$$

$$E(f) \cap E(g) = \emptyset$$

Утверждение 2.

Если $E(f) \cap E(g) = \{M\}$ и $f(x) \leq M$, а $g(x) \geq M$, то f(x)= g(x) равносильно системе уравнений

$$\begin{cases} f(x) = M \\ g(x) = M \end{cases}$$

Пример

$$\log_{5}^{2}(x+1) = -\sqrt{x}$$
$$\log_{5}^{2}(x+1) \ge 0$$

$$-\sqrt{x} \le 0$$

$$\log^2_{5}(x+1) = -\sqrt{x}$$

$$\log_{5}^{2}(x+1) = -\sqrt{x} \qquad \Leftrightarrow \begin{cases} \log_{5}^{2}(x+1) = 0\\ -\sqrt{x} = 0 \end{cases} \qquad \Leftrightarrow \qquad x=0$$

Ответ: 0

Алгоритм решения

- 1.Оценить обе части уравнения
- 2.Если $f(x) \le M$, а $g(x) \ge M$, то равенство f(x) = g(x) возможно тогда и только тогда, когда f(x) и g(x) одновременно будут равны M, т.е.

$$f(x) = g(x) \qquad \Longleftrightarrow \qquad \begin{cases} f(x) = M \\ g(x) = M \end{cases}$$

• Можно решить одно уравнение системы и полученный корень подставить в другое уравнение.

Проверьте свои знания тестированием

Пройдите по ссылке:

Логарифмические уравнения.ехе

Критерии оценки

Надо решить ещё пару примеров,

Ну кто придумал эту математику!

Учитель высшей категории Сильченкова С. Н., г.Белый Тверской обл.

