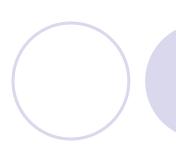

Обобщающий урок по теме: «Методы решения тригонометрических уравнений» 10 класс

- Горбунова Вера
 Александровна, учитель
 физики и математики
 - МБОУ Черемуховская СОШ Новошешминского муниципального района РТ



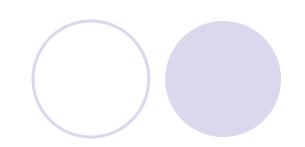
Я. А. Коменский

Арксинус

Определение

$$\pi$$
 0

arcsin t = a


$$1)-\frac{\pi}{2}\leq\alpha\leq\frac{\pi}{2}$$

- 2) $\sin \alpha = t$
- $3)-1\leq t\leq 1$

arcsin(-x) = - arcsinx

Содержание

Арккосинус

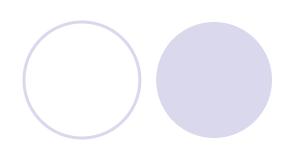
Определение

$$\frac{\pi}{2}$$
 π
 $-\frac{\pi}{2}$

$$arccost = a$$

1)
$$0 \le a \le \pi$$

$$2)\cos a = t$$


$$3)-1 \le t \le 1$$

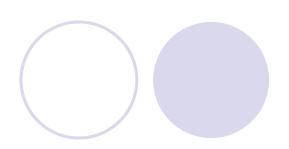
$$arccos(-x) = \pi - arccosx$$

Собержание

Арктангенс

 π

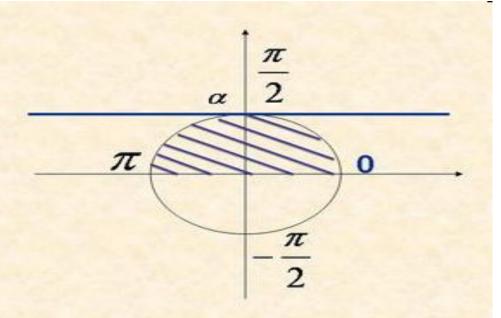
Определение

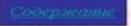

$$\frac{\pi}{2}$$
 $-\frac{\pi}{2}$

arctg t = a

$$1)-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$$

$$2) tga = t$$


Арккотангенс



Определение

$$arcctg\ t = a$$

- 1) $0 < a < \pi$
- 2) ctga = t

Финк- Райт – Раунд - Робин

- arcsin $\sqrt{2/2}$
 - arccos 1
- arcsin (- 1/2)
- arccos (- $\sqrt{3/2}$)
 - arctg √3

- π/4
- 0
- π/6
- 5π/6
- π/3

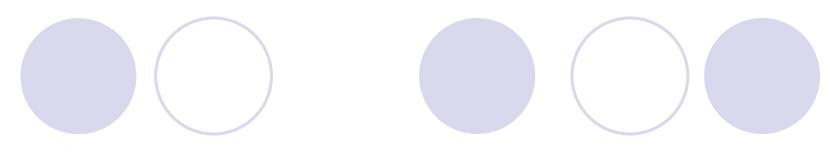
Кол-во верных	оценка
ответов	
5	5
4	4
3	3
< 3	2

Найди ошибку. Релли Робин

$$1 \quad \operatorname{arcsin} 45^{\circ} = \frac{\sqrt{2}}{2}$$

$$2 \quad \arccos\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$$

3
$$\arcsin 3 = \arcsin 1.3 = \frac{\pi}{4} \cdot 3 = \frac{3\pi}{4}$$


$$4 \quad arctg \ 1 = \frac{\pi}{4}$$

$$\boxed{5} \quad arcctg\left(-\sqrt{3}\right) = \boxed{\frac{3\pi}{4}}$$

Оценка

Кол-во верных ответов	оценка
5	5
4	4
3	3
< 3	2

Общая схема исследования функции

- 1. Область определения функции.
- 2. Исследование области значений функции
- 3. Исследование функции на четность.
- 4.. Исследование функции на периодичность
- 5. Формулы корней тригонометрических уравнений.

Φ ункция $y = \sin x$.

- 1. Областью определения функции является множество всех действительных чисел (R)
- 2. Областью значений) [1; 1].
- 3. Функция $y = \sin \alpha$ нечетная, т.к. $\sin (-\alpha) = -\sin \alpha$
- 4. Функция периодическая, с главным периодом 2π sint = a, г $de \mid a \mid \le 1$ $t = (-1)^k arcsina + \pi k, k \in Z$

1)
$$\underline{\sin t=0}$$

 $t = 0+\pi k, k\in \mathbb{Z}$

2)
$$\underline{\sin t=1}$$

 $t = \pi/2 + 2\pi k, k \in \mathbb{Z}$

3)
$$\underline{\sin t} = -1$$

 $t = -\pi/2 + 2\pi k, k \in \mathbb{Z}$

Φ ункция $y = \cos x$.

- 1. Областью определения функции является множество всех действительных чисел (R)
- 2. Областью изменений (Областью значений) [1; 1]
- 3. Функция $y = \cos \alpha$ четная, т.к. $\cos (-\alpha) = \cos \alpha$
 - 4. Функция периодическая, с главным периодом 2 т.

$$\mathbf{cost} = \mathbf{a}$$
, где $|\mathbf{a}| \le 1$
$$t = \pm \arccos \mathbf{a} + 2\pi k, k \in \mathbb{Z}$$

$$1)\underline{\mathbf{cost}} = 0$$

$$t = \pi/2 + \pi k, k \in \mathbb{Z}$$

$$2)\underline{\mathbf{cost}} = 1$$

$$t = 0 + 2\pi k, k \in \mathbb{Z}$$

3)
$$cost = -1$$

 $t = \pi + 2\pi k$, kEZ

$$\Phi$$
ункция $y = tg x$

- 1. Областью определения функции является множество (- π/2; π/2)
 - 2. Областью значений R.
 - 3.Функция y = tg x нечетная, т.к. $tg(-\alpha) = -tg \alpha$
 - 4. Функция периодическая, с главным периодом π.

$$tgt = a, a \in \mathbb{R}$$

$$t = arctg a + \pi k, k \in \mathbb{Z}$$

Φ ункция y = ctg x

- 1. Областью определения функции является множество (πn; π + πn)
- 2. Областью значений R
- 3. Функция y = ctg x нечетная, т.к. $ctg(-\alpha) = -ctg \alpha$
 - 4. Функция периодическая, с главным периодом т.

$$t = arcctg a + \pi k, k \in \mathbb{Z}$$

Клок Бадис

$$\sin x = -\sqrt{3}$$

$$\cos x = \frac{1}{2}$$

$$tg x = -1$$

$$ctg x = \sqrt{3}$$

Пример 1 $sin x = -\frac{\sqrt{3}}{2}$

$$x = (-1)^n \arcsin\left(\frac{\sqrt{3}}{2}\right) + \pi n, n \in \mathbb{Z}$$

$$x = (-1)^{n+1} \arcsin \frac{3}{2} + \pi n,$$

 $x = (-1)^{n+1} \frac{\pi}{3} + \pi n, n \in \mathbb{Z}$

Omeem:
$$(-1)^{n+1} \frac{\pi}{3} + \pi n, n ∈ Z$$

Пример 2 $\cos x = \frac{1}{2}$

$$x = \pm \arccos \frac{1}{2} + 2\pi n, n \in \mathbb{Z}$$

$$x=\pm\frac{\pi}{3}+2\pi n,\,n\in Z$$

$$\frac{Omeem: \pm \frac{\pi}{3}}{n \in \mathbb{Z}} + 2\pi n,$$

Пример 3 tg x = -1

$$x = arctg(-1) + \pi n,$$
 $n \in \mathbb{Z}$
 $x = -arctg(1) + \pi n,$
 $n \in \mathbb{Z}$
 $x = -\frac{\pi}{4} + \pi n,$
 $n \in \mathbb{Z}$
 $x = -\frac{\pi}{4} + \pi n, \quad n \in \mathbb{Z}$
 $x = -\frac{\pi}{4} + \pi n, \quad n \in \mathbb{Z}$

Пример 4 $ctg x = \sqrt{3}$

$$x = \operatorname{arcctg} \sqrt{3} + \pi n,$$
 $n \in \mathbb{Z}$

$$x = \frac{\pi}{5} + \pi n,$$

$$n \in \mathbb{Z}$$

 $\frac{Omeem:}{6} + \pi n, n \in \mathbb{Z}$

Оценка

Кол-во верных ответов	оценка
4	5
3	4
2	3
< 2	2

Другие тригонометрические уравнения

1.Сводимые к квадратным
$$a \cdot \sin^2 x + b \cdot \sin x + c = 0$$

2.Однородные

1)Первой степени: $\mathbf{a} \cdot \mathbf{sinx} + \mathbf{b} \cdot \mathbf{cosx} = \mathbf{0}$

Т.к. sinx и соsх одновременно не равны нулю, то разделим обе части уравнения на соsх.

2)Второй степени: $\mathbf{a} \cdot \mathbf{sin}^2 \mathbf{x} + \mathbf{b} \cdot \mathbf{sin} \mathbf{x} \cdot \mathbf{cos}^2 \mathbf{x} = \mathbf{0}$ Разделим обе части на $\cos^2 \mathbf{x}$.

Содержание

- Метод замены переменной
- Метод разложения на множители
- С помощью тригонометрических формул:
- Формул сложения
- Формул приведения
- Формул двойного аргумента

Основные методы решения тригонометрических уравнений. Домашнее задание.

- Ha «3»
- 1) $3 \sin x + 5 \cos x = 0$
- 2) $5 \sin^2 x 3 \sin x \cos x$ 2) $6 \sin^2 x 5 \sin x \cos x +$ $2 \cos^2 x = 0$
- Ha «4»
- 1) $3 \cos^2 x + 2 \sin x \cos x$ =0
- 2) $5 \sin^2 x + 2 \sin x \cos x \cos^2 x = 1$
- Ha «5»
- 1) $2 \sin x 5 \cos x = 3$
- 2) 1- 4 sin 2x + 6 $\cos^2 x =$

- Ha «3»
- 1) $\cos x + 3 \sin x = 0$
- $\cos^2 x = 0$
- Ha «4»
- 1) $2 \sin^2 x \sin x \cos x = 0$
- 2) 4 sin² x 2sinx cos x - $4 \cos^2 x = 1$
- Ha «5»
- 1) $2 \sin x 3 \cos x = 4$
- \bullet 2) $2 \sin^2 x 2\sin 2x + 1 = 0$

« То, что мы знаем, - ограниченно, а то чего мы не знаем, - бесконечно».

Пьер Симон Лаплас

Пьер Лаплас:

Билетик на выход

a) $2 \cos^2 x + 5 \sin x - 4 = 0$

б) $3 \sin x - 2 \cos 2x = 0$