Моделирование зависимостей между величинами.

Автор презентации: Кондратьев В.В Лукша.В.А

Применение математического моделирования постоянно требует учета зависимостей одних величин от других.

Реализация математической модели на компьютере (компьютерная математическая модель) требует владения приемами представления зависимостей между величинами. Приведем примеры таких зависимостей:

- 1. время падения тела на землю зависит от его первоначальной высоты;
- 2. давление газа в баллоне зависит от его температуры;
- 3. уровень заболеваемости жителей города бронхиальной астмой зависит от концентрации вредных примесей в городском воздухе.

Реализация математической модели на компьютере (компьютерная математическая модель) требует владения приемами представления зависимостей между величинами.

Рассмотрим различные методы представления зависимостей. Всякое исследование нужно начинать с выделения количественных характеристик исследуемого объекта. Такие характеристики называются величинами. Со всякой величиной связаны три основных свойства: имя, значение, тип.

Имя величины

Имя величины может быть смысловым и символическим.

Примером смыслового имени является «давление газа», а символическое имя для этой же величины — Р. В базах данных величинами являются поля записей. Для них, как правило, используются смысловые имена, например: ФАМИЛИЯ, ВЕС, ОЦЕНКА и т. п. В физике и других науках, использующих математический аппарат, применяются символические имена для обозначения величин. Чтобы не терялся смысл, для определенных величин используются стандартные имена. Например, время обозначают буквой t, скорость — V, силу — F и пр.

Значение величины

Если значение величины не изменяется, то она называется постоянной величиной или константой. Пример константы — число Пифагора $\pi = 3,14259...$ Величина, значение которой может меняться, называется переменной. Например, в описании процесса падения тела переменными величинами являются высота Н и время падения t.

Тип величины

Третьим свойством величины является ее тип. С понятием типа величины вы также встречались, знакомясь с программированием и базами данных. Тип определяет множество значений, которые может принимать величина. Основные типы величин: числовой, символьный, логический. Поскольку в данном разделе мы будем говорить лишь о количественных характеристиках, то и рассматриваться будут только величины числового типа.

А теперь вернемся к примерам 1-3 и обозначим все перенесенные величины, зависимости между которыми нас будут интересовать. Кроме имен укажем размерности величин. Размерности определяют единицы, в которых представляются значения величин.

- 1. t (c) время падения; H (м) высота падения. Зависимость будем представлять, пренебрегая учетом сопротивления воздуха; ускорение свободного падения g (м/с 2) будем считать константой.
- 2. Р (н/м2) давление газа (в единицах системы СИ давление измеряется в ньютонах на квадратный метр); t °C температура газа. Давление при нуле градусов Ро будем считать константой для данного газа.
- 3. Загрязненность воздуха будем характеризовать концентрацией при месей (каких именно, будет сказано позже) С (мг/м3). Единица из мерения масса примесей, содержащихся в 1 кубическом метре воздуха, выраженная в миллиграммах. Уровень заболеваемости будем характеризовать числом хронических больных астмой, приходящихся на 1000 жителей данного города Р (бол./тыс.).

Если зависимость между величинами удается представить в математической форме, то мы имеем математическую модель.

Математическая модель — это совокупность количественных характеристик некоторого объекта (процесса) и связей между ними, представленных на языке математики. Хорошо известны математические модели для первых двух примеров. Они отражают физические законы и представляются в виде формул:

$$t = \sqrt{\frac{2H}{g}}; \quad P = P_0 \left(1 + \frac{t}{273}\right)$$

Это примеры зависимостей, представленных в функциональной форме. Первую зависимость называют *корневой* (время пропорционально квад ратному корню высоты), вторую — *линейной*.

Табличные и графические модели

Рассмотрим примеры двух других, не формулированных, способов представления зависимостей между величинами: **табличного** и **графического.** Представьте себе, что мы решили проверить закон свободного падения тела экспериментальным путем. Эксперимент организуем следующим образом: будем бросать стальной шарик с 6-метровой высоты, 9-метровой и т. д. (через 3 метра), замеряя высоту начального положения шарика и время падения. По результатам эксперимента составим таблицу и нарисуем график.

Н, м	t, c		Паде	ение тела	1	
6	1,1	3,0 —				
9	1,4	2,5			-	
12	1,6			Mar And		_
15	1,7	(c) 2.0 + 1.5 + 1.0 + 1.0 + 1.0	1/8/8/			
18	1,9	å 1,0	•			_
21	2,1	0,5				
24	2,2	0,0 1	10	20	30	
27	2,3			Высота (м)	
30	2,5					

Если каждую пару значений H и t из данной таблицы подставить в приведенную выше формулу зависимости высоты от времени, то формула превратится в равенство (с точностью до погрешности измерений). Значит, модель работает хорошо.

В этом примере мы рассмотрели три способа моделирования зависимости величин: функциональный (формула), табличный и графический. Однако математической моделью процесса падения тела на землю можно назвать только формулу. Формула более универсальна, она позволяет определить время падения тела с любой высоты, а не только для того экс периментального набора значений Н, который отображен на рисунке предыдущего слайда. Имея формулу, можно легко создать таблицу и построить график, а наоборот — весьма проблематично. Точно так же тремя способами можно отобразить зависимость давления от температуры. Оба примера связаны с известными физическими законами законами природы. Знания физических законов позволяют производить точные расчеты, они лежат в основе современной техники.

В заключение

Информационные модели, которые описывают развитие систем во времени, имеют специальное название: динамические модели. В примере 1 приведена именно такая модель. В физике динамические информационные модели описывают движение тел, в биологии — развитие организмов или популяций животных, в химии — протекание химических реакций и т . д.

Спасибо за внимание!