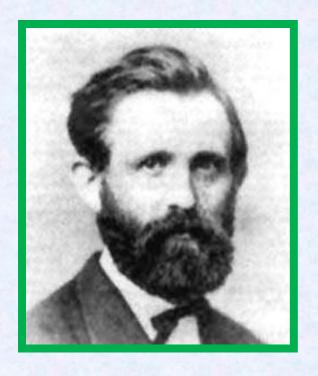

ПРИЛОЖЕНИЯ ПРОИЗВОДНОЙ


Алгебра 10

Садоха Г.К.

учитель математики МБОУ СОШ №3

г. Кстово Нижегородской области

Правильному применению методов можно научиться только применяя их на разнообразных примерах.

Цейтен Г.Г.

Тема урока:

Приложения производной

Чтение графика

Ответ:

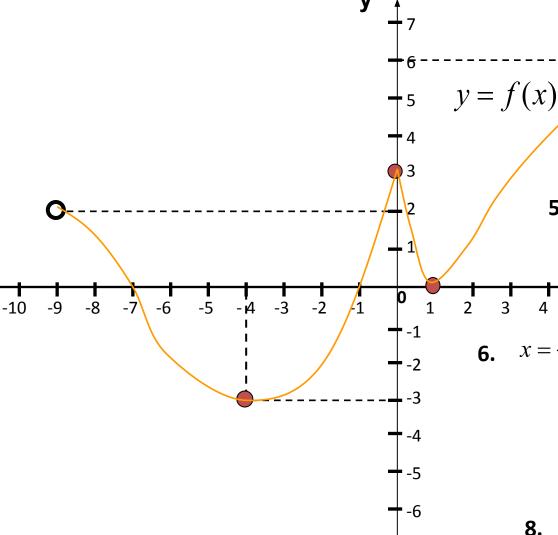
1.
$$\mathcal{I}(y) = (-9;6]$$

2.
$$E(y) = [-3;6]$$

$$x_1 = -7, x_2 = -1, x_3 = 1$$

5. Убывает при
$$x \in (-9;-4]_u x \in [0;1]$$

Возрастает при
$$x \in [-4;0]_u x \in [1;6]$$


6.
$$x = -4, x = 0, x = 1 - moчки$$
 экстремума

7.
$$y_{\min} = f(-4) = -3$$

 $y_{\max} = f(0) = 3$
 $y_{\min} = f(1) = 0$

Функция дифференцируема при всех значениях
$$\mathbf{x}$$
 из области определения, кроме \mathbf{x} =0

9.
$$M = f(6) = 6, m = f(-4) = -3$$

8.

Найдите производную функции

1.
$$f(x) = 4x^3 - 3x^2$$

2.
$$v(t) = \frac{1}{5}t^5 - \frac{1}{3}t^3$$

3.
$$g(x) = \sqrt{x} + \sqrt[3]{x}$$

4.
$$x(t) = \frac{8}{\sqrt[4]{t^3}}$$
; $x(t) = 8t^{-\frac{3}{4}}$

5.
$$S(r) = 2\pi r^2 + 4\pi l r$$

6.
$$f(x) = ax^4 + bx^3 - \frac{c}{x} - d$$

7.
$$\gamma(t) = (3t-5)^4$$

8.
$$h(t) = \upsilon t + \frac{gt^2}{2}$$

9.
$$y(x) = \sqrt[3]{-5x+2}$$

$$f'(x) = 12x^{2} - 6x$$

$$\upsilon'(t) = t^{4} - t^{2}$$

$$g'(x) = \frac{1}{2\sqrt{x}} + \frac{1}{3\sqrt[3]{x^{2}}}$$

$$x'(t) = -\frac{6}{\sqrt[4]{t^{7}}} = -\frac{6}{t\sqrt[4]{t^{3}}}$$

$$S'(r) = 4\pi r + 4\pi l$$

$$f'(x) = 4ax^{3} + 3bx^{2} + \frac{c}{x^{2}}$$

$$\gamma(t) = 12(3t - 5)^{3}$$

$$h'(t) = \upsilon + gt$$

$$y'(x) = \frac{-5}{3\sqrt[3]{(-5x + 2)^{2}}}$$

Физический смысл производной

Задача

Задан закон прямолинейного движения точки

$$x(t) = (t-1)^3$$
, $z \partial e_t \in [0;10]$

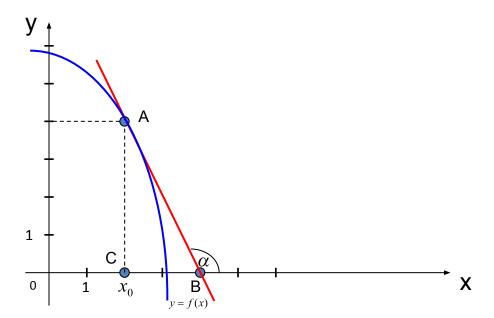
1. Найти среднюю скорость движения на указанном отрезке

$$\upsilon_{cp} = \frac{x(10) - x(0)}{10 - 0} = \frac{9^3 - (-1)^3}{10} = \frac{730}{10} = 73 \,\text{m/c}$$

2. Найти мгновенную скорость в момент времени t=3 сек.

$$\upsilon(t) = x'(t) = 3(t-1)^2$$

$$v_{M2H} = v(3) = 3(3-1)^2 = 3 \cdot 4 = 12 \frac{M}{c}$$


3. Найти ускорение при t=3 сек

$$a(t) = v'(t) = 6(t-1)$$

$$a(3) = 12 \frac{M}{c^2}$$

Геометрический смысл производной

$$f'(x_0) = tg\alpha = \kappa_{\kappa ac}$$

Задача: На рисунке изображён график функции y=f(x) и касательная к нему в точке А с абсциссой

Найти:

$$f'(x_0)$$

Решение:

$$\Delta ABC$$
: $tg < ABC = \frac{AC}{CB}$
$$tg(180^{0} - \alpha) = \frac{4}{2} = 2$$

$$tg\alpha = -2$$

$$tg\alpha = -2$$

$$tg\alpha = -2$$

Найти промежутки монотонности функции

$$f(x) = 0.1x^4 - 0.4x^3 + 0.4x^2 + 0.5$$

Решение $x \in R$ $f'(x) = 0.4x^3 - 1.2x^2 + 0.8x$ f'(x) = 0 $0.4x(x^2 - 3x + 2) = 0$ x = 0, x = 1, x = 2f'(x)Функция убывает при $x \in (-\infty; 0], x \in [1;2]$

 $x \in [0;1], \quad x \in [2;+\infty)$

Возрастает

Дифференцирование

y' y	y	y	y y	У	y
$y = -(3 - \frac{x}{2})^2$				+	
$y = \frac{1}{2 - x}$	+				
y = x + 2			+		
$y = (3 - \frac{1}{3}x)^3$					+
$y = (x-2)^3$		+			

Исследование функции на отрезке

y' y	y	y x	y	y x	x
Только на левом конце отрезка		+			
Только на правом конце отрезка	+				
В одной внутренней точке			+	+	
На левом и правом концах отрезка					+

Самостоятельная работа

При каких действительных значениях **b** уравнение $\sqrt{2x-4} + \sqrt{7-x} = M$ меет решение.

Решение

1.
$$f(x) = \sqrt{2x-4} + \sqrt{7-x}$$

2.
$$D(f): 2 \le x \le 7$$

3.
$$f(2) = \sqrt{5}, f(7) = \sqrt{10}$$

4.
$$f'(x) = \frac{2\sqrt{7-x} - \sqrt{2x-4}}{2\sqrt{(7-x)\cdot(2x-4)}}$$

5.
$$f'(x) = 0$$

$$x = \frac{16}{3}, \frac{16}{3} \in [2;7]$$

6.
$$f(\frac{16}{3}) = \sqrt{15}$$

7.
$$m = \sqrt{5}, M = \sqrt{15},$$
 r.e. $\sqrt{5} \le f \le \sqrt{15} \Rightarrow \sqrt{5} \le b \le \sqrt{15}$

Ответ: при
$$\sqrt{5} \le b \le \sqrt{15}$$

уравнение имеет решение

Домашнее задание

Стр. 322, работа №8