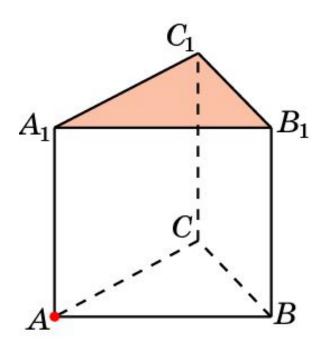
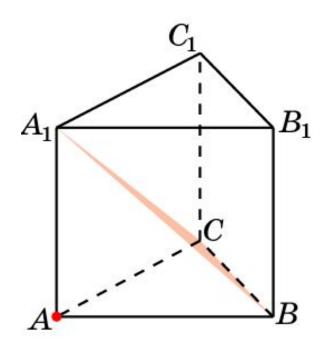

РАССТОЯНИЕ МЕЖДУ ТОЧКОЙ И ПЛОСКОСТЬЮ В ПРОСТРАНСТВЕ

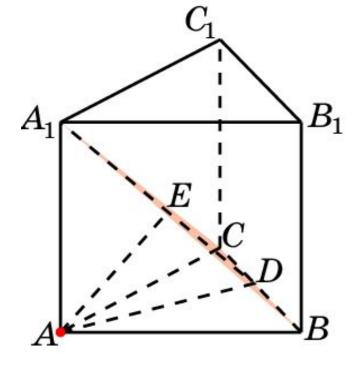
Расстоянием между точкой и плоскостью в пространстве называется длина перпендикуляра, опущенного из данной точки на данную плоскость.



В правильной треугольной призме $ABCA_1B_1C_1$, все ребра которой равны 1, найдите расстояние между точкой A и плоскостью BB_1C_1 .

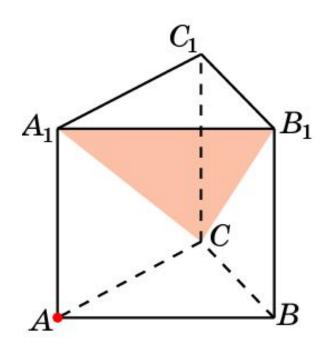

OTBET: $\frac{\sqrt{3}}{2}$.

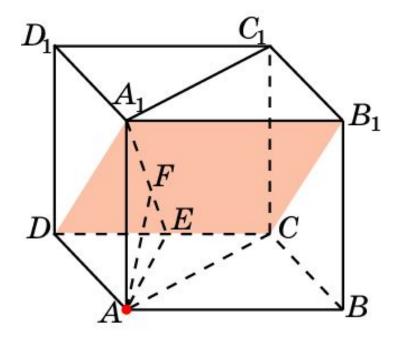
В правильной треугольной призме $ABCA_1B_1C_1$, все ребра которой равны 1, найдите расстояние между точкой A и плоскостью $A_1B_1C_1$.



Ответ: 1.

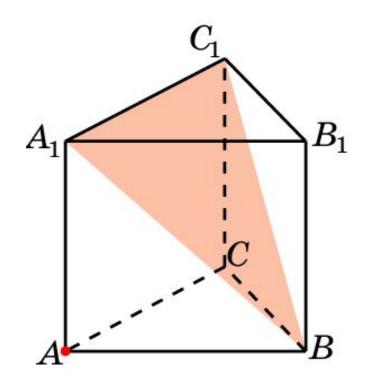
В правильной треугольной призме $ABCA_1B_1C_1$, все ребра которой равны 1, найдите расстояние между точкой A и плоскостью BCA_1 .


Решение.


Через точки A_1 и D — середину ребра BC, проведем прямую. Искомым расстоянием будет расстояние AE от точки A до этой прямой. В прямоугольном треугольнике ADA_1 имеем, $AA_1 = 1$, $AD = \frac{\sqrt{3}}{2}$, $DA_1 = \frac{\sqrt{7}}{2}$. Следовательно, $AE = \frac{\sqrt{21}}{7}$.

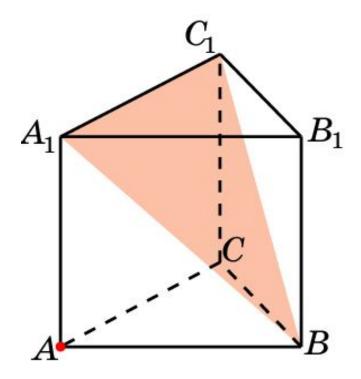
Ответ:
$$\frac{\sqrt{21}}{7}$$
.

В правильной треугольной призме $ABCA_1B_1C_1$, все ребра которой равны 1, найдите расстояние между точкой A и плоскостью A_1B_1C .


Решение.

Достроим данную треугольную призму до четырехугольной. Искомым расстоянием будет расстояние от точки A_1 до плоскости CDA_1 в призме $A\dots D_1$. Это расстояние мы нашли в предыдущей задаче. Оно равно $\frac{\sqrt{21}}{7}.$

Ответ:
$$\frac{\sqrt{21}}{7}$$
.


В правильной треугольной призме $ABCA_1B_1C_1$, все ребра которой равны 1, найдите расстояние между точкой A и плоскостью A_1C_1B .

Решение. Искомое расстояние равно расстоянию от точки A до плоскости A_1B_1C из предыдущей задачи.

OTBET:
$$\frac{\sqrt{21}}{7}$$
.

Решение.

Искомое расстояние равно расстоянию от точки A до плоскости A_1B_1C из предыдущей задачи.

Ответ:
$$\frac{\sqrt{21}}{7}$$
.