1.3. Разведочный анализ данных

Цель, задачи

Цель- представить наблюдаемые данные в компактной и простой форме, позволяющей выявить имеющиеся закономерности и связи

Разведочный анализ данных (РАД) включает:

- преобразование данных и способы наглядного их представления
- •выявление аномальных значений
- •грубая оценка типа распределения
- •сглаживание

Вопросы анализа данных

- 1.Какой обработке подвергнуть наблюдения?
- 2. Какую модель выбрать?
- 3. Какие заключения можно сделать?

Пример РАД

Разведочный анализ (Exploratory data analysis) – средство получения более полной информации об изучаемом явлении

Наблюдения n пар $(x_1, Y_1), ..., (x_n, Y_n)$ опишем уравнением

(1)
$$\mathbf{M}(Y_i) = \beta_0 + \beta_1 x_j, i = 1, ..., n$$

Минимальный предварительный анализ - график рассеяния точек (x_i, Y_i) .

Предварительная обработка данных. Оценка среднего

Оценка \hat{m} - истинного среднего m независимой случайной величины x по выборке объема n Доверительный интервал: $\hat{m} \pm tS_m$ t-распределение Стьюдента: $t = \hat{m}/S_m$ 95%-е доверительные интервалы Для нормального распределения t = 1,96,

Для t-распределения при числе степеней свободы v (v = n - 1), равных 1; 3 и 12, величина t, соответственно, равна 12,7; 4,3 и 2,18.

Причины отличия реального распределения от нормального

- 1. Большинство измерений проводится в конкретных единицах
- 2. Резкая асимметрия некоторых распределений (например, х2, F) при малых выборках, обрывистые края у равномерного распределения
- 3. Поведение на «хвостах» распределения, которое существенно отличается от значений основного количества наблюдений

Робастные оценки

Робастные оценки - robust - крепкий, здоровый,

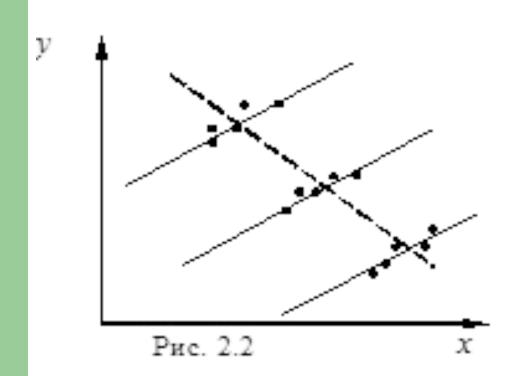
Пример робастной оценки среднего, терпимой к отклонению хвостов распределения от нормального - *медиана* распределения

Мера разброса

- среднеквадратическое отклонение σ
- дисперсия σ²
- размах R

Оценки этих величин обозначают, соответственно, S, S^2 , R

Оценка разброса по S - в линейных преобразованиях типа $Y = \beta + \alpha X$


Разбиение данных на три группы

Качество результатов

- Простая перепроверка. Проверка полученной модели на данных, отличных от тех, по которым определены параметры модели
- Двойная перепроверка. Проверка на данных отличных, как от тех, по которым строилась модель, так и от тех, которые использованы для вычисления параметров модели

Неоднородные выборки

Разделение неоднородной совокупности на однородные

Пусть выборка изучаемой совокупности $x_1, ..., x_n$, содержит элементы двух независимых случайных величин с плотностями распределений $f(x,\theta_1)$ и $f(x,\theta_2)$.

Обозначим через A – множество элементов выборки, принадлежащих к первой случайной величине, B – множество элементов выборки из второй совокупности.

Требуется найти оценки неизвестных параметров θ_1 , θ_2 и множества A и B.

Для оценки этих четырех неизвестных используем метод максимума правдоподобия

Обнаружение аномальных наблюдений

Причины:

- •грубые ошибки при регистрации измерений,
- случайные импульсные помехи,
- •сбои оборудования,
- •измерения в ошибочных единицах
- •и др.

Обнаружение аномальных наблюдений. Критерий проверки

Пусть наблюдения x_1 , ..., x_n являются реализациями независимых случайных величин, подчиняющихся одинаковому нормальному $N(\mu, \sigma^2)$ распределению

Основная гипотеза $H_{0:}$ $Mx_{i} = \mu$, $Dx_{i} = \sigma^{2}$, i = 1, ..., n.

Альтернативная гипотеза H_1 : одна или несколько величин имеют среднее $\mu + d$

Обнаружение аномальных наблюдений. Критерий проверки

При построении критерия возможны варианты, зависящие от степени информации о μ и σ.

Рассмотрим случай, когда значения μ и σ неизвестны. Критериальная статистика:

$$D_n = (x_{(n)} - \overline{x})/S$$
 $x = \frac{1}{n} \sum_{i=1}^n x_i S^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$

Распределение величины D_n получены К. Пирсоном и Н.

- В. Смирновым. Критические значения $D_{n'}$ вычислены Н.
- В. Смирновым и Ф. Граббсом

$$m{H_0}$$
 - $m{D_n}$ < $m{D_a}$ - наблюдение не является аномальным $m{H_1}$ - $m{D_n}$ > $m{D_a}$ - наблюдение является аномальным

Общие выводы об удалении аномальных наблюдений

- 1. Для данных с неправдоподобными наблюдениями использовать *робастные процедуры* оценивания
- 2. Существенно выделяющиеся данные обнаруживать, преобразовывать и удалять, при этом интерпретировать, привлекая знания, не относящиеся к статистической природе
- 3. Процедуры удаления существенно выделяющихся и подозрительно больших наблюдений с последующим оцениванием близких к робастным оценкам

Простые числовые и графические сводки данных

Процедура «стебель с листьями» (Stem-and-Leaf) 250 688 695 795 795 895 895 895 1099 1166 1333 1499 1693 1699 1775 1895

Три вида записи «стебля с листьями» цен на 17 автомобилей «Шевроле»: a – единица = 100 \$; b – единица = 100 \$

#		
1	1	5
1	2	5
2	6 7	98
2 2 3		99
3	8	999
1	10	9
1	11	6
1	13	3
1	14	9
2	16	99
1	17	7
1	18	9

 $\sqrt{17}$

#		
1	0*	1
1	Τ	2
0	F	
3	S	677
3 3 2	П	888
2	1*	01
1	Τ	3
1	F	4
4	S	6677
1	П	8
$\sqrt{17}$		
	'	

Списки использованной литературы и источников:

- А.А.Большаков, Р.Н.Каримов «Методы обработки многомерных данных и временных рядов» Москва 2007 г.
- Электронный учебник StatSoft по анализу данных.