Статистические распределения и их основные характеристики

Различия индивидуальных значений признака у единиц совокупности называются вариацией признака.

Она возникает в результате того, что индивидуальные значения складываются под совместным влиянием разнообразных условий (факторов), по разному сочетающихся в каждом отдельном случае.

Вариация, которая не зависит от факторов, положенных в основу выделения групп, называется *случайной вариацией*.

Приемы изучения вариации в пределах одной группы:

- простроение вариационного ряда (ряда распределения);
- графическое изображение;
- исчисление основных характеристик распределения: показателей центра распределения; показателей вариации.

Вариационный ряд -

групповая таблица, построенная по количественному признаку, в сказуемом которой показывается число единиц в каждой группе.

Форма построения вариационного ряда зависит от характера изменения изучаемого признака.

Он может быть построен в форме дискретного ряда или в форме интервального ряда.

Распределение рабочих по тарифному разряду

	Тарифный разряд рабочего, х	Число рабочих, имеющи х этот разряд, f	Частость W	Накопленная (кумулятивн ая) частота,S
	2	1	0,05	1
ſ	3	5	0,25	5+1=6
	4	8	0,4	6+8=14
	5	4	0,2	14+4=18
	6	2	0,1	18+2=20
	итого	20	1	

Частость расчитывается по формуле

$$W_i = \frac{f_i}{\sum f_i}$$

Замена частот частостями позволяет сопоставить вариационные ряды с различным числом наблюдений.

Средняя квалификация работников

$$\overline{x} = \frac{\sum x_i f_i}{\sum f_i} = \frac{2*1+3*5+4*8+5*4+6*2}{1+5+8+4+2} \approx 4$$

Т.е в среднем рабочие имеют 4 тарифный разряд

Для признака, имеющего непрерывное изменение строится *интервальный*

вариационный ряд распределения.

Определение величины интервала производится

$$i = \frac{x_{\text{max}} - x_{\text{min}}}{m}$$

нижняя граница = x_{min} верхняя граница = $x_{min} + i$

Показатели центра распределения.

Средняя арифметическая для дискретного ряда расчитывается по формуле средней арифметической взвешенной:

$$\bar{x} = \frac{\sum xf}{\sum f}$$

В интервальном ряду расчет производится по этой же формуле, но в качестве х берется середина интервала. Она определяется так

нижняя граница + верхняя граница

Распределение банков по размеру прибыли.

Размер прибыли, млн. крон,х	Середина интервала , х'	Число банков , f	Накопленна я частота, Ѕ
3,7 - 4,6	4,15	3	3
4,6 - 5,5	5,05	4	3+4=7
5,5 - 6,4	5,95	5	7+5=12
6,4 - 7,3	6,85	6	12+6=18
7,3 - 8,1	7,7	2	18+2=20
итого		20	

Средний размер прибыли

$$\overline{x} = \frac{\sum x_i f_i}{\sum f_i} = \frac{4,15*3 + 5,05*4 + 5,95*5 + 6,85*6 + 7,7*2}{3 + 4 + 5 + 6 + 2} = 5,945$$

Структурные средние

Медиана Мода Квартиль

Медиана (Ме)

 соответствует варианту, стоящему в середине ранжированного ряда.
 Положение медианы определяется ее номером:

$$N_{Me} = \frac{n+1}{2}$$

■ где n - число единиц в совокупности.

Медиана в дискретном ряду

 По накопленным частотам определяют ее численное значение в дискретном вариационном ряду.

Вставленная фукция в EXCEL

MEDIAN()

Расчет медианы в дискретном ряду

 Медиана тарифного разряда рабочих будет найдена следующим образом:

$$N_{Me} = \frac{n+1}{2} = \frac{20+1}{2} = 10,5$$

 Следовательно, среднее значение 10-го и 11-го признаков будут соответствовать медиане. По накопленным частотам находим 10-й и 11-й признаки. Их значение соответствует 4-му тарифному разряду, следовательно медиана в данном ряду равна 4.

Медиана в интервальном ряду

- В интервальном ряду распределения по номеру медианы указывают интервал, в ктором находится медиана.
- Численное значение определяется по формуле:

$$Me = X_{Me} + i_{Me} * \frac{\frac{n+1}{2} - S_{Me-1}}{f_{Me}}$$

Расчет медианы в интервальном ряду

По накопленным частотам определяем,
 что медиана находится в интервале
 5,5 - 6,4 так как номер медианы

$$N_{Me} = \frac{n+1}{2} = \frac{20+1}{2} = 10,5$$

а это значение включает кумулятивная частота 12.

Расчет медианы в интервальном ряду

Тогда медиана

$$M_e = 5.5 + (6.4 - 5.5) * \frac{\frac{20+1}{2} - 7}{5} = 6.13$$

 Таким образом, 50% банков имеют прибыль менее 6,13 млн. крон, а другие 50% - более 6,13.

Мода (Мо)

- наиболее часто встречающееся значение признака.
- В дискретном ряду это варианта с наибольшей частотой.

Вставленная фукция в EXCEL

MODE()

Значение моды в интервальном ряду

 В интервальном ряду сначала определяется модальный интервал, т.е. тот, который имеет наибольшую частоту, а затем расчитывают моду по формуле:

$$Mo = X_{Mo} + i_{Mo} \frac{f_{Mo} - f_{Mo-1}}{(f_{Mo} - f_{Mo-1}) + (f_{Mo} - f_{Mo+1})}$$

Определение значения моды в приведенных выше дискретном и интервальном рядах

- В примере 1 наибольшую частоту 8 имеет четвертый тарифный разряд, следовательно значение моды равно 4 тарифному разряду
- В примере 2 модальный интервал 6,4 -7,3 так как такой уровень прибыли имеют наибольшее число банков.

$$Mo = 6,4 + (7,3-6,4) * \frac{(6-5)}{(6-5)+(6-2)} = 6,58$$

Квартиль

- это значения признака, которые делят ранжированный ряд на четыре равные по численности части.
- Таких величин будет три: первая квартиль(Q1), вторая квартиль (Q2), третья квартиль (Q3).
- Вторая квартиль является медианой.

Сначала определяется положение или место квартили:

$$N_{Q1} = \frac{n+1}{4}$$

$$N_{Q2} = \frac{n+1}{4} * 2 = \frac{n+1}{2}$$

$$N_{Q3} = \frac{n+1}{4} * 3$$

Квартиль в дискретном ряду

 В дискретном ряду численное значение квартили определяют по накопленным частотам.

Вставленная фукция в EXCEL

QUARTILE()

Квартиль в интервальном ряду

 В интервальном ряду распределения сначала указывают интервал, в котором лежит квартиль, затем определяют ее численное значение по формуле:

$$Q = x_Q + i \frac{N_Q - S_{(Q-1)}}{f_Q}$$

Показатели вариации (колеблемости) признака.

К абсолютным показателям относят:

- Размах колебаний;
- Среднее линейное отклонение;
- Дисперсию;
- Среднее квадратическое отклонение;
- Квартильное отклонение.

Размах колебаний (размах вариации)

 представляет собой разность между максимальным и минимальным значениями признака изучаемой совокупности:

$$R = x_{\text{max}} - x_{\text{min}}$$

 Размах вариации зависит только от крайних значений признака, поэтому область его применения ограничена достаточно однородными совокупностями. **Точнее характеризуют вариацию** признака показатели, основанные на учете колеблемости всех значений признака.

К таким показателям относят:

- среднее линейное отклонение,
- дисперсию,
- среднее квадратическое отклонение.

Среднее линейное отклонение d

для несгруппированных данных расчитывается по формуле

$$d = \frac{\sum |x - \overline{x}|}{d}$$

N

Вставленная фукция в EXCEL

AVEDEV()

Для п вариационного ряда:

$$d = \frac{\sum |x - \overline{x}| \cdot f}{\sum f}$$

Расчет среднего линейного отклонения

Произведено продукции одним рабочим за смену, шт, х	Число рабочих f	xf	$\mathbf{x} - \Box \mathbf{x}$	$ \mathbf{x} - \Box \mathbf{x} \mathbf{f}$
8	7	56	8 - 10 = -2	 8 - 10 *7 = 14
9	10	90	9 - 10 = -1	9 -10 *10 = 10
10	15	150	10 - 10 = 0	10-10 *15 = 0
11	12	132	11 - 10 = 1	11-10 *12=12
12	6	72	12 - 10 = 2	12-10 *6 = 12
	50	500		48

Дисперсия

- это средняя арифметическая квадратов отклонений каждого значения признака от общей средней.
- Дисперсия обычно называется средним квадратом отклоненй.
- В зависимости от исходных данных дисперсия может вычисляться по средней арифметической простой или взвешенной:

Дисперсия простая

$$\sum_{x=0}^{2} \frac{\sum_{x=0}^{2} (x-x)^2}{x}$$

П Вставленная фукция в EXCEL

VARP()

Дисперсия взвешенная

$$\sigma^2 = \frac{\sum (x - \overline{x})^2 \cdot f}{\sum f}$$

Среднее квадратическое отклонение

стандартное отклонение (Standard Deviation)

представляет собой корень квадратный из дисперсии

Среднее квадратическое отклонение невзвешенное

$$\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n}}$$

Вставленная фукция в EXCEL

STDEVP()

Среднее квадратическое отклонение взвешенное

$$\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2 f_i}{\sum f}}$$

Данные о производительности труда рабочих

Произведено продукции одним рабочим, шт. (х)	Число рабо чих f	xf	x - \(\sqrt{x}	$(x - \Box x)^2$	$(\mathbf{x} - \Box \mathbf{x})^{2} * \mathbf{f}$
8	7	56	-2	4	28
9	10	90	-1	1	10
10	15	150	0	0	0
11	12	132	1	1	12
12	6	72	2	4	24
итого	50	500			74

Расчет показателей дисперсии и среднего квадратического отклонения

1. Исчислим среднюю арифметическую взвешенную:

$$\overline{x} = \frac{\sum x_i f_i}{\sum f_i} = \frac{500}{50} = 10$$

Расчет показателей дисперсии и среднего квадратического отклонения

2. Определим дисперсию.

$$\sigma^{2} = \frac{(11-10)^{2} * 7 + (9-10)^{2} * 10 + (10-10)^{2} * 15 + (11-10)^{2} * 12 + (12-10)^{2} * 6}{7 + 10 + 15 + 12 + 6}$$
1,48

Расчет показателей дисперсии и среднего квадратического отклонения

3. среднее квадратическое отклонение будет равно

$$\sigma = \sqrt{\sigma^2} = \sqrt{1,48} = 1,22$$

 Это означает, что отклонение от средней производительности составило 1,2 шт.

Другой метод расчета дисперсии

 Дисперсия равна разности средней из квадратов признака и квадрата средней.

$$\sigma^2 = x^2 - \overline{x}^2$$

Относительные показатели вариации

Применяются для оценки интенсивности вариации и для сравнения ее в разных совокупностях.

 относительный размах вариации (коэффициент осцилляции)

$$K_o = \frac{R}{\overline{x}} * 100\%$$

Относительные показатели вариации

 Относительное линейное отклонение (отклонение по модулю)

$$K_o = \frac{d}{\overline{x}} * 100\%$$

Коэффициент вариации

$$V = \frac{\sigma}{\overline{x}} \cdot 100\%$$

Относительные показатели вариации

Относительный показатель квартильной вариации (относительное квартильное расстояние)

$$K_{dk} = \frac{d_k}{M_e} * 100\%$$

$$K_{Q} = \frac{Q_{3} - Q_{1}}{2Q_{2}} * 100\%$$

 Оценка степени интенсивности вариации возможна только для каждого отдельного признака и совокупности определенного состава.

Предположим вариация производительности труда на предприятиях Эстонии v<10% рассматривается как слабая,10%<v<25% - умеренная, сильная при v>25%. Однако, если рассматривается вариация роста взрослых людей, то при v=4% следует говорить об очень сильной интенсивности

Моменты распределения и показатели его формы.

- Центральные моменты распределения порядка — это средние значения разных степеней отклонений отдельных величин признака от его средней арифметической величины.
- Момент первого порядка равен нулю.
- Второй центральный момент представляет собой дисперсию.
- Третий момент используется для оценки асимметрии
- Четвертый для оценки эксцесса.

Моменты распределения

Порядок	Формула				
момента	ПО	ПО			
	несгруппированным	сгруппированным			
	данным	данным			
Первый	$\sum (x_i - \overline{x})$	$\sum_{(j)} (x_j - \overline{x}) f_j$			
μ_1	$\frac{(i)}{n}$	$\sum_{(j)} f_j$			
Второй	$\sum_{(i)} (x_i - \overline{x})^2$	$\sum_{(j)} (x_j - \overline{x})^2 f_j$			
μ_2	$\frac{n}{n}$	$\sum_{(j)} f_j$			

Моменты распределения

Порядок	Формула				
момента	ПО	ПО			
	несгруппированным	сгруппированным			
	данным	данным			
Третий	$\sum (x_i - \overline{x})^3$	$\sum_{(j)} (x_j - \overline{x})^3 f_j$			
μ_3	$\frac{(i)}{n}$	$\sum_{(j)} f_j$			
Четвертый	$\sum_{i} (x_i - \overline{x})^4$	$\sum_{(j)} (x_j - \overline{x})^4 f_j$			
μ_4	$\frac{(i)}{n}$	$\sum_{(j)} f_j$			

Показатели асимметрии

На основе момента третьего порядка можно построить коэффициент асимметрии

$$A_{S} = \frac{\mu_{3}}{\sigma^{3}}$$

или показатель Пирсона

$$A_{\text{Mo}} = \frac{\overline{x} - \text{Mo}}{\sigma}$$

Показатели асимметрии

Если A > 0, то асимметрия
правосторонняя, а если A < 0, то
асимметрия левосторонняя, в
симметричном распределении – A=0.

В EXCEL используется функция
 SKEW ().

Характеристика эксцесса распределения

$$E = \frac{\mu_4}{-4} - 3$$

- В нормальном распределении E = 0, поэтому, если E > 0, то эксцесс выше нормального (островершинная кривая),
- E < 0, эксцесс ниже нормального (плосковершинная кривая).
- В EXCEL используется функция KURT ().

Характеристика эксцесса распределения

 По значению показателей асимметрии и эксцесса можно судить о близости распределения к нормальному.

Если
$$\frac{As}{\sigma_{as}} \le 2$$
 и $\frac{Ex}{\sigma_{ex}} \le 2$

то распределение можно считать нормальным

Оценка диапазона изменения статистической переменной

По теореме Чебышева:

- в интервале (µ 2σ, µ +2σ) находится 75 % значений,
- в интервале (μ 3σ, μ +3σ) находится 89 % значений.

Оценка диапазона изменения статистической переменной

- «Правило трех сигм» справедливо для нормального распределения
- в интервале (μ σ, μ + σ) находится 68% значений,
- в интервале (μ 2σ, μ +2σ) находится
 95.4% значений,
- в интервале (μ 3σ, μ +3σ) находится 99.7% значений.

Закон (правило) сложения дисперсий.

$$\sigma_0^2 = \delta^2 + \overline{\sigma}^2$$

- lacksquare величина общей дисперсии
- 8² межгрупповая дисперсия

Межгрупповая дисперсия

$$\delta^{2} = \frac{\sum (\overline{x}_{i} - \overline{x})^{2}}{n}; \qquad \delta^{2} = \frac{\sum (\overline{x}_{i} - \overline{x})^{2} \cdot f}{\sum f}$$

Средняя внутригрупповая дисперсия

$$\overline{\sigma}^2 = \frac{\sum \sigma_i^2}{n}; \qquad \overline{\sigma}^2 = \frac{\sum \sigma_i^2 \cdot f}{\sum f}$$

Имеются следующие данные о времени простоя автомобиля под разгрузкой:

№ пункта разгрузки	1	2	3	4	5	6	7	8	9	10
Число грузчиков	3	4	4	3	3	4	4	4	3	4
Время простоя мин.	12	10	8	15	19	12	8	10	18	8

Вспомогательная таблица для расчета общей дисперсии.

Время простоя под разгрузкой мин., х	Число выполнен ных разгрузок, f	x*f	$\mathbf{x} - \Box \mathbf{x}_0$	$(x-$ $\Box x_0)^2$	$(\mathbf{x} - \Box \mathbf{x}_0)^2 \mathbf{f}$
8	3	24	-4	16	48
10	2	20	-2	4	8
12	2	24	0	0	0
15	1	15	3	9	9
18	1	18	6	36	36
19	1	19	7	49	49
ИТОГО	10	120	-	-	150

Среднее время простоя

$$\bar{x} = \frac{120}{10} = 12$$
мин

Общая дисперсия

$$\sigma_o^2 = \frac{150}{10} = 15$$

Расчет внутригрупповой дисперсии по первой группе (число грузчиков, участвующих в разгрузке, 3 чел)

Время простоя под разгрузкой, мин., х	Число выполнен -ных разгрузок, f	x*f	x - □x ₁	$ \begin{array}{c c} (x - \Box x_1)^2 \\ f \end{array} $
12	1	12	-4	16
15	1	15	-1	1
18	1	18	2	4
19	1	19	3	9
итого	4	64	_	30

Дисперсия первой группы

$$\overline{x}_1 = \frac{64}{4} = 16 \text{ мин}$$

$$\sigma_1^2 = \frac{30}{4} = 7,5$$

Расчет внутригрупповой дисперсии по второй группе (число грузчиков, участвующих в разгрузке, - 4)

Время простоя под разгрузкой, мин., х	Число выполненных разгрузок, f	x*f	x - □x ₂	$(x - \Box x_2)^2 f$
8	3	24	-1,33	5,31
10	2	20	0,67	0,90
12	1	12	2,67	7,13
ИТОГО	6	56	_	13,37

Дисперсия второй группы

$$\overline{x}_2 = \frac{56}{6} = 9{,}33 \text{ мин}$$

$$\sigma_2^2 = \frac{13,37}{6} = 2,23$$

Средняя из внутригрупповых дисперсий

$$\sigma^{2} = \frac{\sum \sigma_{i}^{2} n_{i}}{\sum n_{i}} = \frac{7,5*4+2,23*6}{4+6} = 4,3$$

Межгрупповая дисперсия

$$\delta^{2} = \frac{\sum (\bar{x}_{i} - \bar{x})^{2} \cdot f}{\sum f} = \frac{(16 - 12)^{2} * 4 + (9,33 - 12)^{2} * 6}{4 + 6} = 10,7$$

Общая дисперсия

$$\sigma_o^2 = 4,3 + 10,7 = 15,0$$