TEOPUS BEPOSTHOCTU

Точечные оценки

доцент:

Колосько Анатолий Григорьевиг

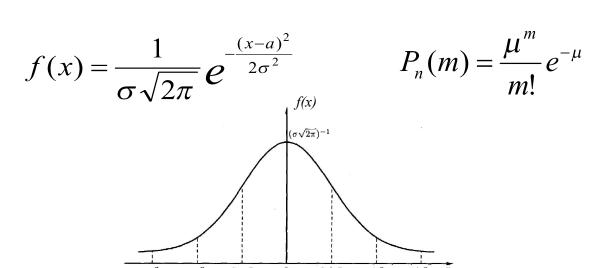
(AGKOLOSKO@MAIL.RU)

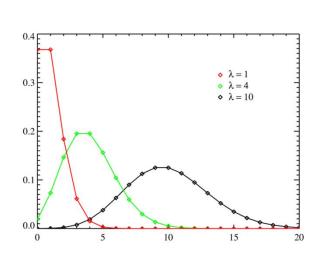
Необходимость оценки распределения

Пусть требуется изучить количественный признак генеральной совокупности. Допустим, что из теоретических соображений удалось установить, какое именно распределение имеет признак.

если наперед известно, что изучаемый признак распределен в генеральной совокупности нормально, то необходимо оценить (приближенно найти) математическое ожидание и среднее квадратическое отклонение,

признак имеет, например, распределение Пуассона, то необходимо оценить параметр λ , которым это распределение определяется.





Статистическая оценка

Выборку объёма n : $V = \{x_1, x_2, ..., x_n\}$ можно назвать n-мерной случайной величиной. Любая функция от этой величины называется **статистикой**.

Статистической оценкой неизвестного параметра теоретического распределения называют функцию от наблюдаемых случайных величин (т.е. статистику), которая его описывает.

Оценку, которая определяется одним числом, называют точечной.

Например: для оценки математического ожидания нормального распределения служит функция (среднее арифметическое наблюдаемых значений признака)

$$\overline{X} = (X_1 + X_2 + \ldots + X_n)/n.$$

Чтобы статистические оценки давали хорошие приближения оцениваемых параметров, они должны удовлетворять определённым требованиям, которые мы рассмотрим далее.

Оценка как случайная величина

Обозначим Θ^* – статистическую оценку неизвестного параметра Θ_{τ} теоретического распределения f(x), описывающего случайную величину X.

Допустим, по выборке объёма n найдена оценка $\Theta^*_{\ _1}$.

Повторим опыт – из генеральной совокупности извлечём ещё одну выборку объёма n и получим оценку $\Theta^*_{\ _2}$.

Извлекая выборку многократно, получим набор РАЗЛИЧНЫХ статистических оценок $\Theta^*_{1}, \Theta^*_{2}, \dots, \Theta^*_{k}$.

Здесь мы можем рассматривать Θ^* как случайную величину, а множество $\{\Theta^*_1, ..., \Theta^*_k\}$ тогда будет набором её возможных значений.

Для этой случайной величины можно ввести те же самые вероятностные параметры, что и для обычной случайной величины X: среднее, дисперсию... при этом Θ сама, как параметр, может быть средней (например, для $Norm(a, \sigma)$).

Требования к оценкам статистических параметров

1. Состоятельная статистическая оценка – это оценка, которая при увеличении

объёма выборки n $\to \infty$ стремится по вероятности к оцениваемому параметру. Требование состоятельности предъявляется при рассмотрении больших выборок. $P(\left|\Theta_n^* - \Theta_T\right| > \varepsilon) \to 0$ npu $n \to \infty$ ∂n $\forall \varepsilon > 0$

2. Несмещённая статистическая оценка — это оценка, у которой мат. ожидание $M\left[\Theta_n^*\right] = \Theta_T \quad npu \quad \forall n$ равно оцениваемому параметру при любом объёме выборки:

$$n \to \infty$$
 $D(\Theta_n^*) \to 0$

Соблюдение этого требования гарантирует отсутствие систематических ошибок.

Если у несмещённой Θ при , то оценка ещё и состоятельная.

Смещённая статистическая оценка — это оценка, у которой наоборот :

$$M(\Theta^*) \neq \Theta_{\mathsf{T}} \quad D[\Theta_n^*] = \min D(\mathit{paзличныx} \quad \Theta) \quad \mathit{npu} \quad \mathit{зadaннom} \quad \mathit{n}$$

3. Эффективная статистическая оценка – это оценка, которая при

Генеральная средняя

Генеральной средней x_r называют среднее арифметическое значений признака генеральной совокупности.

Если же значения признака
$$x_1, x_2, \ldots, x_k$$
 имеют соответственно частоты N_1, N_2, \ldots, N_k , причем $N_1+ N_2+ \ldots + N_k = N$, то
$$\overline{x_r} = (x_1N_1 + x_2N_2 + \ldots + x_kN_k)/N,$$

Итак, если рассматривать обследуемый признак X генеральной совокупности как случайную величину, то математическое ожидание признака равио генеральной средней этого признака:

$$M(X) = \overline{x}_{\Gamma}$$

Отклонением называют разность $x_i - x$ между значением признака и общей средней. сумма этих отклонений должна быть равна 0, что следует из определения среднего:

$$\sum n_i (x_i - \overline{x}) = 0.$$

Генеральная средняя = мат. ожидание!

Математическое ожидание – это число:
$$M(X) = \sum_{i=1}^{n} (x_i \cdot p_i)$$

Пусть в генеральной совокупности варианты-значения встречаются:

 $x_1 - n_1$ pas, $x_2 - n_2$ pas ... $x_m - n_m$ pas.

Среднее арифметическое всех результатов будет равно:

$$\langle X \rangle = (x_1 n_1 + x_2 n_2 + \dots + x_m n_m) \cdot \frac{1}{n} = x_1 \cdot \frac{n_1}{n} + x_2 \cdot \frac{n_2}{n} + \dots + x_m \cdot \frac{n_m}{n}$$

Так как при выборке число Х мы выбираем случайно, то полагаем, что все эти варианты-значения равновероятны. Тогда согласно классическому определению

вероятности относительная частота варианты $\omega_i = n_i / n = P(x_i)$ - вероятность вытащить

её из генеральной совокупности.
$$\langle X \rangle = x_1 \cdot p_1 + x_2 \cdot p_2 + \ldots + x_m \cdot p_m = M(X)$$

То есть:

$$M(X) = \overline{x_r}$$

или что то же самое:

Оценка **⊙***: Выборочная средняя

Выборочной средней х_в называют среднее арифметическое значение признака

выборочной совокупности (также обозначается $\bar{x_n}$).

$$\overline{X}_B = (x_1 + \dots + x_n) \cdot \frac{1}{n}$$

Если же значения признака x_1, x_2, \ldots, x_k имеют соответственно частоты n_1, n_2, \ldots, n_k , причем $n_1 + n_2 + \ldots + n_k = n$, то

$$\overline{x}_{B} = (n_{1}x_{1} + n_{2}x_{2} + \ldots + n_{k}x_{k})/n$$

или

$$\overline{x}_{B} = \left(\sum_{i=1}^{k} n_{i} x_{i} \right) / n,$$

Среднее абсолютное отклонение Θ (ср. арифметическое абсолютных отклонений):

$$\theta = (\sum n_i | x_i - \overline{x}_B |) / \sum n_i$$

Свойство устойчивости X_B

Свойство устойчивости: если по нескольких выборкам достаточно большого объёма

из одной и той же генеральной совокупности будут найдены выборочные средние,

Выносмовма (тексостопыко изряченийх самых умень крепределенных совокупностей равны между собой, то близость выборочных средних к генеральным не зависит от отношения объема выборки к объему генеральной совокупности. Она зависит от объема выборки: чем объем выборки больше, тем меньше выборочная средняя отличается от генеральной. Например, если из одной совокупности отобран 1% объектов, а из другой совокупности отобрано 4% объектов, причем объем первой выборки оказался большим, чем второй, то первая выборочная средняя будет меньше отличаться от соответствующей генеральной средней, чем вторая.

Требования к оценке $\Theta^* = X_B$

1. \mathbf{x}_{B}^{-} - состоятельная

по теореме Чебышева: поэтому:

$$P(\left|\overline{X}_{n} - M(X)\right| > \varepsilon) \xrightarrow[n \to \infty]{} 0 \qquad P(\left|\overline{X}_{B} - \overline{X}_{\Gamma}\right| > \varepsilon) \xrightarrow[n \to \infty]{} 0$$

2. x_B - несмещённая мат. ожидание оценки:

$$M(x_B) = M\left(\frac{\sum_{i=1}^n X_i}{n}\right) = \frac{\sum_{i=1}^n M(X_i)}{n} = \frac{n \cdot M(X)}{n} = M(X) = \Theta_T$$

3. $\bar{\mathbf{x}_B}$ - эффективная? Будет ли её дисперсия являться минимальной? Не всегда! Дисперсия оценки:

$$D(x_B) = D(\sum_{i=1}^n X_i / n) = \frac{\sum_{i=1}^n D(X_i)}{n^2} = \frac{n \cdot D(X)}{n^2} = \frac{D(X)}{n}$$
 распределения это действительно минимум

В случае нормального распределения это действительно минимум по сравнению с

Генеральная дисперсия

Генеральной дисперсией D_r называют среднее арифметическое квадратов отклонений значений признака генеральной совокупности от их среднего значения $\overline{x_r}$.

Если все значения $x_1 x_2, \ldots, x_N$ признака генеральной совокупности объема N различны, то

$$D_{\Gamma}(X) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{X}_{\Gamma})^2$$

При этом теоретическая дисперсия признака (случайной величины) совпадает с генеральной дисперсией: $D(X) = D_{\scriptscriptstyle \Gamma}(X)$

Генеральным средним квадратическим отклонением (стандартом) называют квадратный корень из генеральной дисперсии:

$$\sigma_{\mathbf{r}} = V \overline{D}_{\mathbf{r}}$$
.

Оценка Θ^* : Выборочная дисперсия

Выборочной дисперсией $D_{\rm B}$ называют среднее арифметическое квадратов отклонения наблюдаемых значений признака от их среднего значения $\overline{x}_{\rm B}$.

Если все значения x_1, x_2, \ldots, x_n признака выборки объема n различны, то

$$D_{B}(X) = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{X}_{e})^{2}$$

Выборочным средним квадратическим отклонением (стандартом) называют квадратный корень из выборочной дисперсии:

$$\sigma_{\rm B} = V \overline{D}_{\rm B}$$
.

Коэффициент вариации *V* – выраженное в процентах отношение выборочного среднего квадратического отклонения к выборочной средней:

$$V = \sigma_{\rm B}/\bar{x_{\rm B}} \cdot 100\%$$

Требования к оценке $\Theta^* = D_B$

1. D_B - состоятельная по известной формуле:

$$D_B = \left(\frac{1}{n}\sum_{i=1}^n X_i^2\right) - \left(\overline{X}_B\right)^2 \xrightarrow[n \to \infty]{} M(X^2) - M(X)^2 = D(X) = \Theta_T$$

2. D_в - смещённая! мат. ожидание оценки:

$$M[D_B(X)] = \frac{n-1}{n} \cdot D(X)$$

т.е. при использовании этой оценки будет возникать систематическая ошибка в меньшую сторону! потому что $M(D_B) < D(X)$.

3. D_B - эффективная? Будет ли её дисперсия являться минимальной? Нет. Даже в случае нормального распределения. Однако при $n \to \infty$ её мат. ожидание асимптотически приближается к D(X), поэтому выборочная дисперсия является асимптотически эффективной.

Вывод мат. ожидания D_в

Пересчитаем выборочную дисперсию, сделав центрированную величину X-M(X):

$$D_{B}(X) = \overline{X^{2}}_{s} - (\overline{X}_{s})^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{X}_{s})^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - M(X) + M(X) - \overline{X}_{s})^{2} =$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i} - M(X))^{2} - \frac{2}{n} \sum_{i=1}^{n} (x_{i} - M(X)) (M(X) - \overline{X}_{s}) + \frac{1}{n} \sum_{i=1}^{n} (M(X) - \overline{X}_{s})^{2} =$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i} - M(X))^{2} + \frac{2}{n} (M(X) - \overline{X}_{s}) (n\overline{X}_{s} - nM(X)) + \frac{1}{n} n \cdot (M(X) - \overline{X}_{s})^{2} =$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i} - M(X))^{2} - 2(M(X) - \overline{X}_{s})^{2} + (M(X) - \overline{X}_{s})^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - M(X))^{2} - (M(X) - \overline{X}_{s})^{2}$$

Теперь посчитаем мат.ожидание это дисперсии:

$$M[D_{B}(X)] = M\left[\frac{1}{n}\sum_{i=1}^{n}(x_{i}-M(X))^{2}-(M(X)-\overline{X}_{e})^{2}\right] = M\left[\frac{1}{n}\sum_{i=1}^{n}(x_{i}-M(X))^{2}\right]-M\left[(M(X)-\overline{X}_{e})^{2}\right] = M\left[\frac{1}{n}\sum_{i=1}^{n}(x_{i}-M(X))^{2}\right]$$

используем уже доказанное: $M(\overline{X}_{\epsilon}) = M(X)$

$$= \frac{1}{n} \sum_{i=1}^{n} M \left[(x_i - M(X))^2 \right] - M \left[(M(\overline{X}_e) - \overline{X}_e)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} D(X) - D(\overline{X}_e) = D(X) - \frac{D(X)}{n} = \frac{n-1}{n} D(X)$$

Оценка генеральной дисперсии по исправленной выборочной

Зная связь:
$$M[D_B(X)] = \frac{n-1}{n} \cdot D(X)$$

легко получить **исправленную выборочную дисперсуро**: $=\frac{n}{n-1}D_{B}$ которая будет несмещённой точечной оценкой:

$$M[\hat{D}_B(X)] = D(X) = D_{\Gamma} \qquad M[D_B(X)] = \frac{n-1}{n} \cdot D(X)$$

Т.е. разница между выборочной дисперсией и исправленной лишь в множителе:

$$D_B(X) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{X}_B)^2 \qquad \hat{D} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X}_B)^2$$

На практике используют исправленную дисперсию, **если** n < 30.

Задача 1

По результатам наблюдений случайной величины X получились числа:

1, 7, 7, 2, 3, 2, 5, 5, 4, 6, 3, 4, 3, 5, 6, 6, 5, 5, 4, 4

построить:

- 1. дискретный вариационный ряд
- 2. многоугольник частот
- 3. график выборочной функции распределения
- 4. найти выборочное среднее
- 5. найти выборочную дисперсию

1. Составляем ряд распределения:

Количество элементов выборки равно 20, следовательно объем выборки n = 20. Составляем ранжированный ряд:

Выделяем варианты и их частоты $x_i(n_i)$:

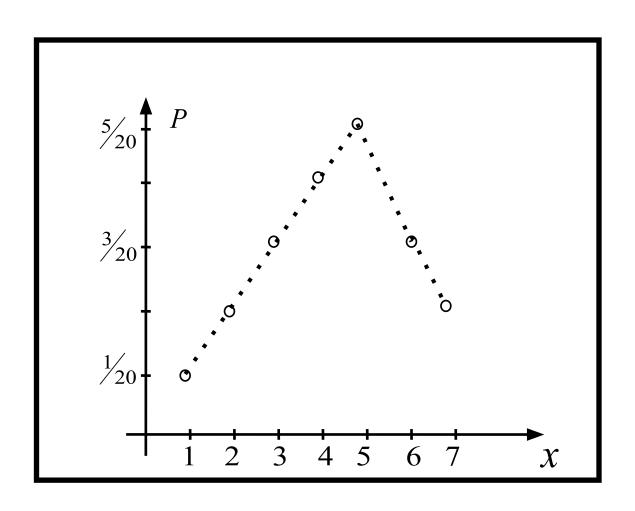
1(1), 2(2), 3(3), 4(4), 5(5), 6(3), 7(2).

Вариантов всего 7, поэтому будем строить дискретный ряд.

Находим частоты по формуле
$$p_i^* = \frac{n_i}{n}$$

1	2	3	4	5	6	7
1/20	2/20	3/20	4/20	5/20	3/20	2/20

2. По найденному ряду строим многоугольник частот:



3. Находим выборочную функцию распределения:

$$F^*(x_4) = p_1^* + p_2^* + p_3^* = \frac{1}{20} + \frac{2}{20} + \frac{3}{20} = \frac{6}{20}$$

$$F^*(x_5) = p_1^* + p_2^* + p_3^* + p_4^* = \frac{1}{20} + \frac{2}{20} + \frac{3}{20} + \frac{4}{20} = \frac{10}{20}$$

$$F^*(x_5) = p_1^* + p_2^* + p_3^* + p_4^* = \frac{1}{20} + \frac{2}{20} + \frac{3}{20} + \frac{4}{20} = \frac{10}{20}$$

$$F^*(x_5) = p_1^* + p_2^* + p_3^* + p_4^* = \frac{1}{20} + \frac{2}{20} + \frac{3}{20} + \frac{4}{20} = \frac{10}{20}$$

$$F^*(x_6) = p_1^* + p_2^* + p_3^* + p_4^* + p_5^* =$$

$$= \frac{1}{20} + \frac{2}{20} + \frac{3}{20} + \frac{4}{20} + \frac{5}{20} = \frac{15}{20}$$

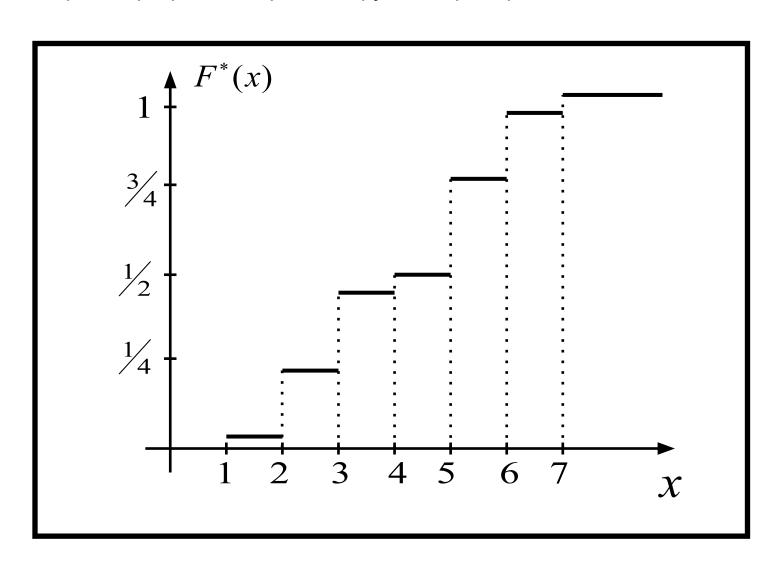
$$F^*(x_7) = p_1^* + p_2^* + p_3^* + p_4^* + p_5^* + p_6^* =$$

$$= \frac{1}{20} + \frac{2}{20} + \frac{3}{20} + \frac{4}{20} + \frac{5}{20} + \frac{3}{20} = \frac{18}{20}$$

$$F^*(x_8) = p_1^* + p_2^* + p_3^* + p_4^* + p_5^* + p_6^* + p_7^* =$$

$$= \frac{1}{20} + \frac{2}{20} + \frac{3}{20} + \frac{4}{20} + \frac{5}{20} + \frac{3}{20} + \frac{2}{20} = \frac{20}{20} = 1$$

...строим график выборочной функции распределения:



4. Находим выборочное среднее по ряду распределения:

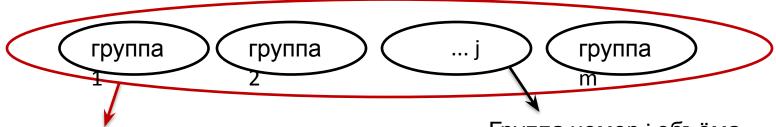
$$\overline{X}_B = 1 \cdot \frac{1}{20} + 2 \cdot \frac{2}{20} + 3 \cdot \frac{3}{20} + 4 \cdot \frac{4}{20} + 5 \cdot \frac{5}{20} + 6 \cdot \frac{3}{20} + 7 \cdot \frac{2}{20} = 4.35$$

5. Находим выборочную дисперсию:

$$D_B = 1^2 \cdot \frac{1}{20} + 2^2 \cdot \frac{2}{20} + 3^2 \cdot \frac{3}{20} + 4^2 \cdot \frac{4}{20} + 5^2 \cdot \frac{5}{20} + 6^2 \cdot \frac{3}{20} + 7^2 \cdot \frac{2}{20} - (4.35)^2 = 4.74?$$

Разбиение статистической совокупности на группы

Допустим, что все значения количественного признака X совокупности, безразлично генеральной или выборочной, разбиты на несколько групп.



Генеральная совокупность объёма n: общее среднее \overline{x} , общая дисперсия

$$D_{obu,i} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

Внутригрупповая дисперсия: (среднее групповых дисперсий)

Группа номер ј объёма
$$N_j$$
: групповая средняя \overline{x}_j , групповая дисперсия $Q_{j}^2 = \frac{1}{N_j} \sum_{i=1}^{j} (x_i - \overline{x}_j)^2$

$$D_{ extit{внугр}} = \sum_{j=1}^m rac{N_j}{n} D_j$$
 $D_{ extit{общ}} = D_{ extit{внугр}} + D_{ extit{межегр}}$ $D_{ extit{межегр}} = \sum_{i=1}^{N_j} rac{N_j}{n} (ar{x}_j - ar{x})^2$

Межгрупповая дисперсия:

Задача 2

Найти внутригрупповую, межгрупповую и общую дисперсии совокупности,

состоящей из трёх групп:

первая группа:

X_{i}	1	2	8
n_i	30	15	5

вторая группа:

X_{i}	1	6
n_{i}	10	15

X_{i}	3	8
n_i	20	5

Oms. $D_{BHFD} = 4.6$; $D_{MEKFD} = 1$; $D_{OGM} = 5.6$.

Оценка корреляции величин

Пусть данные наблюдений за признаками X и \ сведены в корреляционную таблицу.

Можно считать, что наблюдаемые Y разбиты на группы, соответствующие отдельным X.

Тогда условные средние <у_x> можно назвать групповыми средними.

Общая дисперсия в этом случае может быть представлена в виде суммы дисперсий:

		x	
Y	3	9	
3	4	13	
5	6	7	
$n_{_{X}}$	10	20	
ȳ _x	4,2	3,7	

$$D_{oбw} = D_{\text{внугр}} + D_{\text{межгр}}$$

Можно доказать, что:

- 1. если Y связан с X функциональной зависимостью ${\cal P}_{{\cal Q}_{excp}}$ / $D_{oби}=1$
- 2. если Y связан с X корреляционной зависимостью, $\mathcal{D}_{\text{межер}}^{\text{O}}$ / $D_{\text{общ}}$ < 1

(функциональная зависимость является крайним случаем вероятностной).

$$\eta_{yx} = \sqrt{D_{\text{межер}}/D_{\text{общ}}}$$

 $\stackrel{\scriptscriptstyle{\mathcal{M}}}{-}$ выборочное корреляционное отношение Y к X.

Ассиметрия и Эксцесс

Начальный момент порядка ${\it k}$ случайной величины ${\it X}_{{\it V}_k} = M({\it X}^k)$ это математическое ожидание величины ${\it X}^k$:

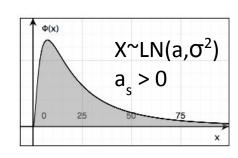
Центральный момент порядка к случайной величины X это математическое ожидание величины $(X - M(X))^k$: $\mu_k = M \big[(X - M(X))^k \big]$

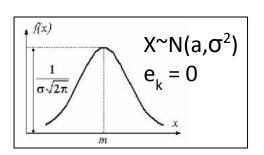
Начальные и центральные эмпирические моменты являются состоятельными оценками соответственно начальных и центральных теоретических моментов.

Асимметрия эмпирического распределения $\dot{u}_s = \mu_3 / \sigma^3$ a $_s > 0$ (< 0), если правый хвост распределения длиннее (короче) левого.

Эксцесс эмпирического распределения: $= \mu_4 / \sigma^4 - 3$ $e_k > 0 (< 0)$, если пик возле мат. ожидания острый (гладкий).

Логнормальное распределение : $X \sim LN(a,\sigma^2) => => ln(X) \sim N(a,\sigma^2)$





(предложен Пирсоном)

А. Оценка одного параметра. Пусть задан вид плотности распределения $f(x, \theta)$, определяемой одним неизвестным параметром θ . Требуется найти точечную оценку параметра θ .

Для оценки одного параметра достаточно иметь одно уравнение относительно этого параметра. Следуя методу моментов, приравняем, например, начальный тео-

$$M(X) = \bar{x}_{\scriptscriptstyle B}.$$

Математическое ожидание M(X), как видно из соотношения

$$M(X) = \int_{-\infty}^{\infty} x f(x; \theta) dx = \varphi(\theta),$$

есть функция от θ , поэтому (*) можно рассматривать как уравнение с одним неизвестным θ . Решив это уравнение относительно параметра θ , тем самым найдем его точечную оценку θ *, которая является функцией от выборочной средней, следовательно, и от вариант выборки:

$$\theta^{\bullet} = \psi (x_1, x_2, \ldots, x_n).$$

Задача

Пример 1. Найти методом моментов по выборке x_1, x_3, \ldots, x_n точечную оценку неизвестного параметра λ показательного распределения, плотность распределения которого $f(x) = \lambda e^{-\lambda x}$ ($x \ge 0$).

Решени

e:

 $1/\lambda = x_B$.

Б. Оценка двух параметров методом Пирсона

Б. Оценка двух параметров. Пусть задан вид плотности распределения $f(x; \theta_1, \theta_2)$, определяемой неизвестными параметрами θ_1 и θ_2 . Для отыскания двух параметров необходимы два уравнения относительно этих параметров. Следуя методу моментов, приравняем, например, начальный теоретический момент первого порядка начальный теоретический моменту первого порядка и центральный теоретический момент второго порядка центральный пирическому моменту второго порядка:

$$\left. \begin{array}{l} M(X) = \overline{x}_{B}, \\ D(X) = D_{B}. \end{array} \right\}$$

Математическое ожидание и дисперсия есть функции от θ_1 н θ_2 , поэтому (**) можно рассматривать как систему двух уравнений с двумя неизвестными θ_1 и θ_2 . Решив

Задача

Пример 2. Найти методом моментов по выборке x_1, x_2, \ldots, x_n точечные оценки неизвестных параметров α и σ нормального распределения

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(x-a)^2/(2\sigma^2)}$$
.

Решени

Θ.

Приняв во внимание, что математическое ожидание иормального распределения равно параметру a, дисперсия равна σ^2 (см. гл. XII, § 2), имеем:

$$a = \overline{x}_{B}$$
, $\sigma^{2} = D_{B}$.

Замечание 1. Для оценов неизвестных параметров можно приравнивать не только сами моменты, но и функции от моментов. В частности, этим путем получают состоятельные оценки характеристик распределений, которые являются функциями теоретических моментов. Например, асимметрия теоретического распределения (см. гл. XII, § 9)

$$A_S = \mu_3/\sigma^3 = \mu_3/(\sqrt{\mu_2})^3$$

есть функция от центральных мементов второго и третьего порядков. Заменив эти теоретические моменты соответствующими эмпирическими моментами, получим точечную оценку асимметрии

$$A_S^* = m_8/(\sqrt{m_2})^3$$
.

Метод наибольшего правдоподобия

(предложен Фишером)

А. Дискретные случайные величины. Пусть X — дискретная случайная величина, которая в результате n испытаний приняла значения x_1, x_2, \ldots, x_n . Допустим, что вид закона распределения величины X задан, но неизвестен параметр θ , которым определяется этот закон. Требуется найти его точечную оценку.

Обозначим вероятность того, что в результате испытания величина X примет значение $x_i (i=1, 2, ..., n)$, через $p(x_i; \theta)$.

Функцией правдоподобия дискретной случайной величины X называют функцию аргумента θ :

 $L(x_1, x_2, \ldots, x_n; \theta) = p(x_1; \theta) p(x_2; \theta) \ldots p(x_n; \theta),$ где x_1, x_2, \ldots, x_n —фиксированные числа.

L - это вероятность получить такую выборку!

В качестве точечной оценки параметра θ принимают такое его значение $\theta^* = \theta^*(x_1, x_2, \ldots, x_n)$, при котором функция правдоподобия достигает максимума. Оценку θ^* называют оценкой наибольшего правдоподобия.

Метод наибольшего правдоподобия

Погарифмической функцией правдоподобия называют функцию $\ln L$. Как известно, точку максимума функции $\ln L$ аргумента θ можно искать, например, так:

- 1) найти производную $\frac{d \ln L}{d\theta}$;
- 2) приравнять производную нулю и найти критическую точку корень полученного уравнения (его называют уравнением правдоподобия);
- 3) найти вторую производную $\frac{d^2 \ln L}{d\theta^2}$; если вторая производная при $\theta = \theta^*$ отрицательна, то θ^* —точка максимума.

Недостаток метода состоит в том, что он часто требует сложных вычислений.

Замечание 2. Оценка нанбольшего правдоподобия не всегда совпадает с оценкой, найденной методом моментов.

Метод наибольшего правдоподобия

Б. Непрерывные случайные величины.

Функцией правдоподобия непрерывной случайной величины X называют функцию аргумента θ :

$$L(x_1, x_2, ..., x_n; \theta) = f(x_1; \theta) f(x_2; \theta) ... f(x_n; \theta),$$

где f - плотности распределений вероятности величин x.

Задача

Пример 3. Найти методом наибольшего правдоподобия оценку параметра λ показательного распределения

$$f(x) = \lambda e^{-\lambda x} \qquad (0 < x < \infty),$$

если в результате n испытаний случайная величина X, распределенная по показательному закону, приняла значения x_1, x_2, \ldots, x_n .

Решение

Решение. Составим функцию правдоподобия, учитывая, что $\theta = \lambda$:

$$L = f(x_1; \lambda) f(x_2; \lambda) \dots f(x_n; \lambda) = (\lambda e^{-\lambda x_1}) (\lambda e^{-\lambda x_2}) \dots (\lambda e^{-\lambda x_1}).$$

Отсюда

$$L = \lambda^n e^{-\lambda \sum x_i}$$
.

Найдем логарифмическую функцию правдоподобия:

$$\ln L = n \ln \lambda - \lambda \sum x_i.$$

Найдем первую производную по λ:

$$\frac{d \ln L}{d \lambda} = \frac{n}{\lambda} - \sum x_i.$$

Напишем уравнение правдоподобия, для чего приравняем первую производную нулю:

$$(n/\lambda)-\sum x_i=0.$$

Найдем критическую точку, для чего решим полученное уравнение относительно λ:

$$\lambda = n/\sum x_i = 1/(\sum x_i/n) = 1/\overline{x}_B.$$

Найдем вторую производную по λ:

$$\frac{d^2 \ln L}{d\lambda^2} = -\frac{n}{\lambda^2}.$$

Легко видеть, что при $\lambda = 1/x_B$ вторая производная отрицательна;

Откуда следует,
$$\lambda^* = 1/x_B$$
. что:

Замечание. Если плотность распределения f(x) непрерывной случайной величины X определяется двумя нензвестными параметрами θ_1 и θ_2 , то функция правдоподобия является функцией двух независимых аргументов θ_1 и θ_2 :

$$L = f(x_1; \theta_1, \theta_2) f(x_2; \theta_1, \theta_2) \dots f(x_n; \theta_1, \theta_2),$$

где x_1, x_2, \ldots, x_n — наблюдавшиеся значения X. Далее находят логарифмическую функцию правдоподобия и для отыскания ее максимума составляют и решают систему

$$\begin{cases} \frac{\partial \ln L}{\partial \theta_1} = 0, \\ \frac{\partial \ln L}{\partial \theta_2} = 0. \end{cases}$$

Пример 4. Найти методом наибольшего правдоподобия оценки параметров а н о нормального распределения

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(x-a)^2/2\sigma^2},$$

если в результаге n испытаний величина X приняла значения

 x_1, x_2, \ldots, x_n . Решенне. Составим функцию правдоподобия, учитывая, что $\theta_1 = a \ H \ \theta_2 = \sigma$:

$$L = \frac{1}{\sigma \sqrt{2\pi}} e^{-(x_1 - a)^2/2\sigma^2} \cdot \frac{1}{\sigma \sqrt{2\pi}} e^{-(x_2 - a)^2/2\sigma^2} \cdots \times \frac{1}{\sigma \sqrt{2\pi}} e^{-(x_n - a)^2/2\sigma^2}$$

Отсюда

$$L = \frac{1}{\sigma^n (\sqrt{2\pi})^n} e^{-(\sum (x_i - a)^2/2\sigma^2)}$$

Найдем логарифмическую функцию правдоподобия:

$$\ln L = -n \ln \sigma + \ln \frac{1}{(\sqrt{2\pi})^n} - \frac{\sum (x_i - a)^2}{2\sigma^2}.$$

Найдем частные производные по а и по о:

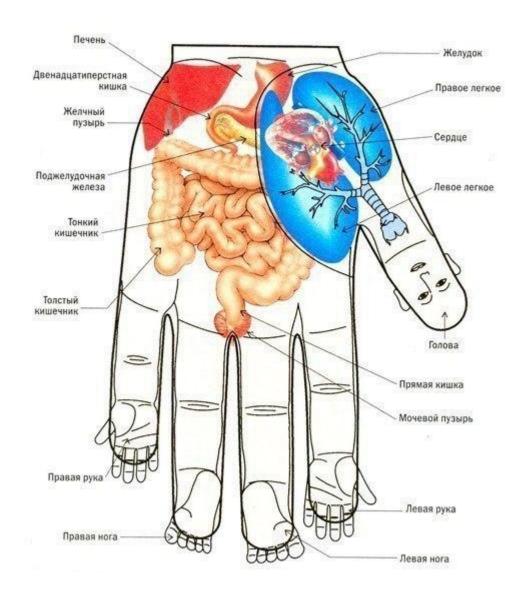
$$\frac{\partial \ln L}{\partial a} = \frac{\sum x_i - na}{\sigma^2}; \quad \frac{\partial \ln L}{\partial \sigma} = -\frac{n}{\sigma} + \frac{\sum (x_i - a)^2}{\sigma^3}.$$

Приравняв частные производные нулю и решив полученную систему двух уравнений относительно а и о2, получим:

$$a = \sum x_i / n = \overline{x_B}; \quad \sigma^2 = (\sum (x_i - \overline{x_B})^2) / n = D_B.$$

Итак, искомые оценки наибольшего правдоподобия: $a^{\bullet} = x_{\rm B}$; $\sigma^{\bullet} = V \overline{D_{B}}$. Заметим, что первая оценка несмещенная, а вторая смещенная.

Спасибо за внимание:)



...точечные

Вопросы для контроля усвояемости предмета (стр1)

- Необходимость статистической оценки теоретического распределения
- Статистическая оценка
- Точечная статистическая оценка
- Точечная оценка Θ случайная величина?
- Состоятельная статистическая оценка
- Несмещённая статистическая оценка
- Эффективная статистическая оценка
- Как связана генеральная средняя с мат. ожиданием признака?
- Выборочная средняя
- Свойство устойчивости выборочной средней
- Среднее абсолютное отклонение
- Является ли выборочная средняя состоятельной?
- Является ли выборочная средняя несмещённой?
- Является ли выборочная средняя эффективной?
- Генеральная дисперсия
- Выборочная дисперсия
- Генеральное и выборочное среднее квадратическое отклонение

Вопросы для контроля усвояемости предмета (стр2)

- Коэффициент вариации
- Является ли выборочная дисперсия состоятельной?
- Является ли выборочная дисперсия несмещённой?
- Является ли выборочная дисперсия эффективной?
- Исправленная выборочная дисперсия
- Групповая средняя, групповая дисперсия
- Внутригрупповая дисперсия
- Межгрупповая дисперсия
- Связь внутригрупповой и межгрупповой дисперсий
- Начальный момент порядка к
- Центральный момент порядка k
- Асимметрия
- Эксцесс
- Метод моментов. Оценка одного или двух параметров
- Метод наибольшего правдоподобия
- Функция правдоподобия