# ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ ЧИСЛОВОГО АРГУМЕНТА

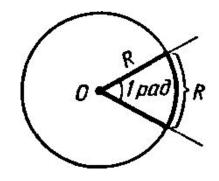
Угол в 1 радиан — это такой центральный угол, длина дуги которого равна радиусу окружности. Радианная и градус ная меры связаны зависимостью  $p180^{\circ} = \pi$  гол в раве  $n^{\circ}$  ради  $\frac{\pi n}{180}$ 

При радианном измерении углов упрощается ряд формул. для окружности радиуса  $\mathbf{r}$  длина  $\mathbf{l}$  ее дуги в  $\mathbf{\alpha}$  радиан находится по формуле:

 $l = \alpha r$ 

площадь S сектора круга радиуса 🖍 дуга которого содержит 🌣 радиан:

$$S = \frac{\alpha r^2}{2}$$



### Значение синуса, косинуса, тангенса, котангенса

| α     | 0 | $\frac{\pi}{6}$      | π<br>4               | $\frac{\pi}{3}$      | $\frac{\pi}{2}$ | $\frac{2\pi}{3}$      | $\frac{3\pi}{4}$      | <u>5π</u>             | π  | $\frac{7\pi}{6}$      | <u>5π</u><br>4        | $\frac{4\pi}{3}$      | $\frac{3\pi}{2}$ | <u>5π</u><br>3        | $\frac{7\pi}{4}$     | <u>11π</u>            | 2π |
|-------|---|----------------------|----------------------|----------------------|-----------------|-----------------------|-----------------------|-----------------------|----|-----------------------|-----------------------|-----------------------|------------------|-----------------------|----------------------|-----------------------|----|
| sin a | 0 | 1/2                  | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1               | $\frac{\sqrt{3}}{2}$  | $\frac{\sqrt{2}}{2}$  | 1 2                   | 0  | $-\frac{1}{2}$        | $-\frac{\sqrt{2}}{2}$ | $-\frac{\sqrt{3}}{2}$ | -1               | $-rac{\sqrt{3}}{2}$  | $-rac{\sqrt{2}}{2}$ | $-\frac{1}{2}$        | 0  |
| .05 2 | ı | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | 1 2                  | 0               | $-\frac{1}{2}$        | $-\frac{\sqrt{2}}{2}$ | $-\frac{\sqrt{3}}{2}$ | -1 | $-\frac{\sqrt{3}}{2}$ | $-\frac{\sqrt{2}}{2}$ | - <u>1</u>            | 0                | 1 2                   | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$  | 1  |
| .5.2  | 0 | $\frac{1}{\sqrt{3}}$ | 1                    | √3                   | -               | $-\sqrt{3}$           | -1                    | $-\frac{1}{\sqrt{3}}$ | 0  | $\frac{1}{\sqrt{3}}$  | 1                     | √3                    | -                | -√3                   | -1                   | $-\frac{1}{\sqrt{3}}$ | 0  |
| ctg 2 | _ | √3                   | 1                    | $\frac{1}{\sqrt{3}}$ | 0               | $-\frac{1}{\sqrt{3}}$ | -1                    | $-\sqrt{3}$           | _  | √3                    | ı                     | $\frac{1}{\sqrt{3}}$  | 0                | $-\frac{1}{\sqrt{3}}$ | -1                   | <b>–√</b> 3           | -  |

## Формулы сложения

$$\cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta;$$

$$\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta;$$

$$\sin (\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta;$$

$$\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta;$$

$$\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta;$$

$$tg (\alpha + \beta) = \frac{tg \alpha + tg \beta}{1 - tg \alpha tg \beta}; tg (\alpha - \beta) = \frac{tg \alpha - tg \beta}{1 + tg \alpha tg \beta}.$$



# Формулы суммы и разности синусов (косинусов)

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2};$$

$$\sin \alpha - \sin \beta = 2 \sin \frac{\alpha - \beta}{2} \cos \frac{\alpha + \beta}{2};$$

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2};$$

$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha - \beta}{2} \sin \frac{\alpha + \beta}{2}.$$

формулы двойного аргумента

$$\sin 2\alpha = 2 \sin \alpha \cos \alpha;$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha;$$

$$\cos 2\alpha = 1 - 2 \sin^2 \alpha; \cos 2\alpha = 2 \cos^2 \alpha - 1;$$

$$tg \ 2\alpha = \frac{2 tg \alpha}{1 - tg^2 \alpha}.$$

# Тригонометрические функции и их графики

Функции синус и косинус. Окружность радиуса 1 с центром в начале координат называют *единичной окружностью*. Пусть точка  $P_a$  единичной окружности получена при повороте точки  $P_0$  (1; 0) на угол в а радиан. Нетрудно понять, что ордината точки  $P_a$  — это синус угла а, а абсцисса этой точки — косинус угла  $\alpha$ .

Определение. Числовые функции, заданные формулами y= sin x и y = cos x, называют *синусом* и *косинусом* (и обозначают sin и cos).

cosa

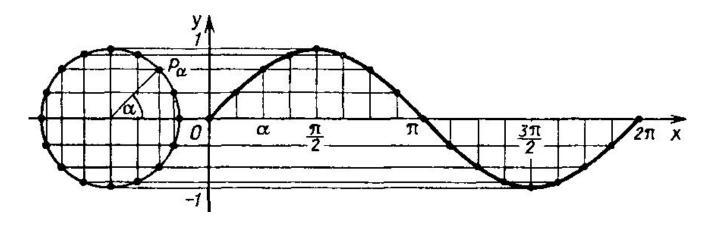
Область определения функций — множество всех действительных чисел. Областью значений функций синус и косинус является отрезок [—1; 1], поскольку и ординаты, и абсциссы точек единичной окружности принимают все значения от - 1 до 1.

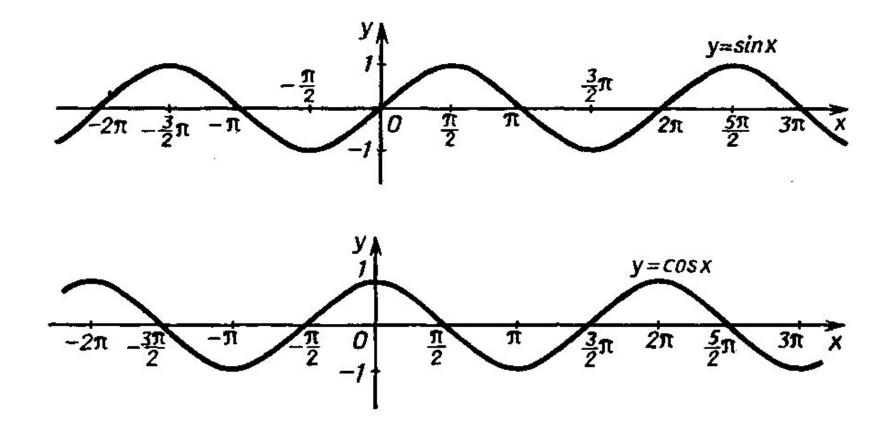
Для любого х справедливы равенства:

$$\sin(-x) = -\sin x, \cos(-x) = \cos x;$$
  

$$\sin(x+2\pi n) = \sin x, \cos(x+2\pi n) = \cos x$$

График синуса называется *синусоидой*. Отрезок [—1; 1] оси ординат, с помощью которого мы находили значения синуса, иногда называют *линией синусов*.



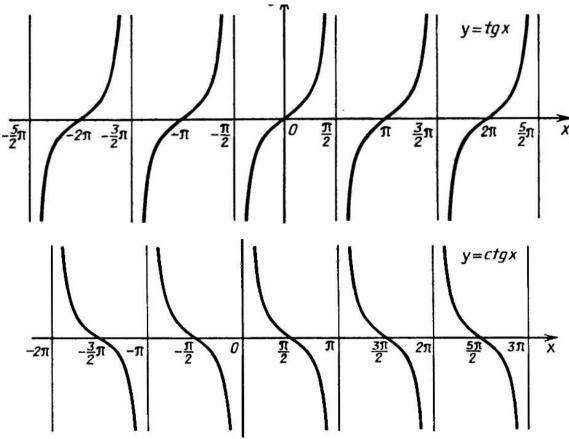


Графики функций синуса и косинуса

Функции тангенс и котангенс и их графики.

Определение. Числовые функции, заданные формулами  $y=tg\ x$  и  $y=ctg\ x$ , называют соответственно *тангенсом* и *котангенсом* (и обозначают tg и

ctg).



Графики функций тангенса и котангенса