

Строение ЦНС

нервная система
 состоит из двух
 частей:
 центральная
 нервная система и
 периферическая
 нервная система.

Нашу периферийную нервную систему также можно разделить далее на две группы: сенсорносоматическую нервную систему и автономную нервную систему.

• Мы сознательно можем контролировать и испытывать сенсорно-соматические действия, в то время как автономная нервная система участвует в наших рефлексах и других непроизвольных движениях.

Соматическая нервная система

 иннервирует скелетные мышцы и органы чувств, обеспечивая восприятие раздражений и ответные моторные реакции.

Сенсорно-соматическая нервная система

 Двенадцать пар черепных нервов и тридцать одна пара спинномозговых нервов сенсорно-соматической нервной системы работают независимо, исполняя свои функции для того, чтобы обеспечить мир ощущений и движений.

нерв	Чувство или Движение	Функция
I. Обонятельный нерв	Чувство	Обоняние
II. Зрительный нерв	Чувство	Зрение
III. Глазодвигательный нерв	Движение	Движение глаза
IV. Блоковый нерв	Движение	Движение
V. Тройничный нерв	Оба	Лицевые и ротовые ощущения/движения. Способность жевать
VI. Отводящий нерв	Движение	Движение глаза
VII. Лицевой нерв	O6a	Вкус/движение лицевых мышц (улыбка) и слюнная железа
VIII. Вестибулокохлеарный (слуховой) нерв	Чувство	Слух и поддержка равновесия
IX. . Языкоглоточный нерв	O6a	Вкус / процесс глотания
Х. А. Блуждающий нерв	Оба	Замедляет сердцебиение и сжимает поток воздуха в легких
ХІ. Вспомогательный нерв	Движение	Контролирует процесс глотания, движения головы и плеч
XII. Подъязычный нерв	Движение	Движение мышц языка

- Большинство внутренних органов, таких как сердце, селезенка и желудок, контролируются нервной системой автоматически.
- Многие из тех же черепных нервов, которые работают в сенсорно-соматической нервной системе, также вовлечены в работу автономной нервной системы.

- Автономная и соматическая нервные системы действуют содружественно. Их нервные центры, особенно на уровне ствола мозга тесно связаны друг с другом. Благодаря этим свойствам могут осуществляться сомато-висцеральные, висцеросоматические, висцеровисцеральные, висцеро-сенсорные и др. рефлексы.
- Но периферические отделы этих систем различны.

Особенности строения ВНС

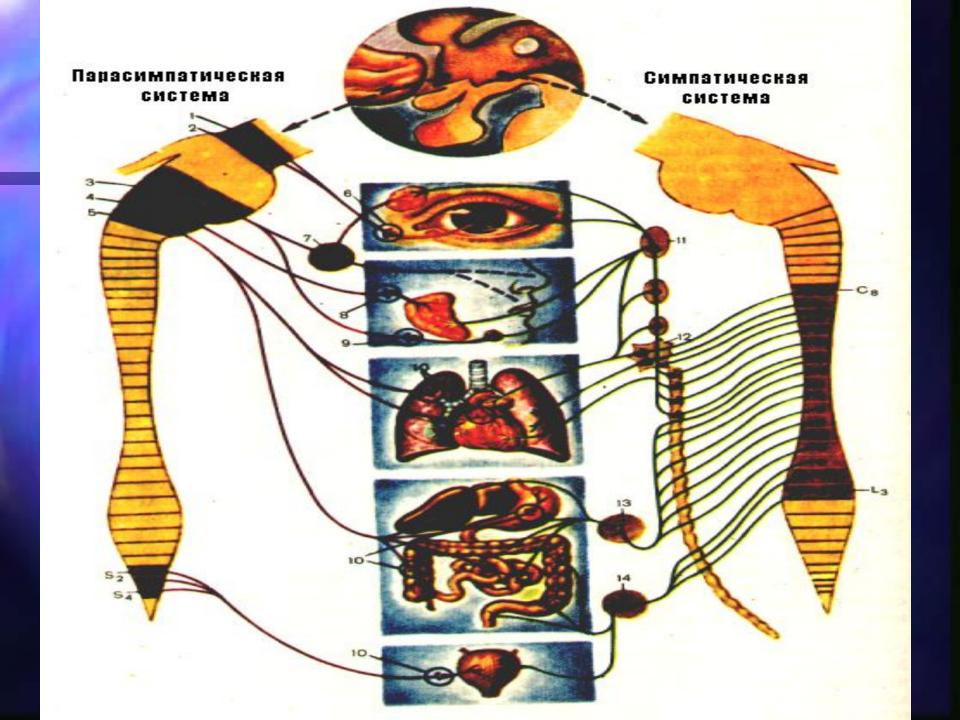
- ВНС имеет центральную часть и периферическую часть.
- Центральные отделы ВНС представлены <u>ядрами</u>, лежащими в среднем (III), продолговатом (VII, IX, X) и спинном мозге.
- Периферические отделы ВНС представлены <u>ганглиями</u>, нервами и их ветвями.
- Оба регулируются <u>вегетативными центрами</u>, расположенными в <u>гипоталамусе и структурах</u> <u>лимбической системы и базальных ядрах</u>.
- Высший контроль через гипоталамические центры осуществляет кора головного мозга, особенно ее лобные и височные отделы.

Цитата

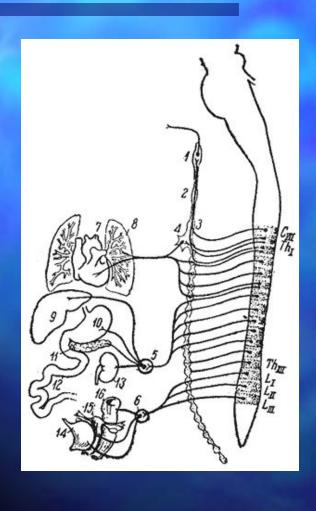
« Мы не являемся хозяевами, а лишь свидетелями частоты сердцебиений, сокращений желудка и кишечника. Их работа совершается помимо нашей воли.»

Джон Ленгли, 1903 г.

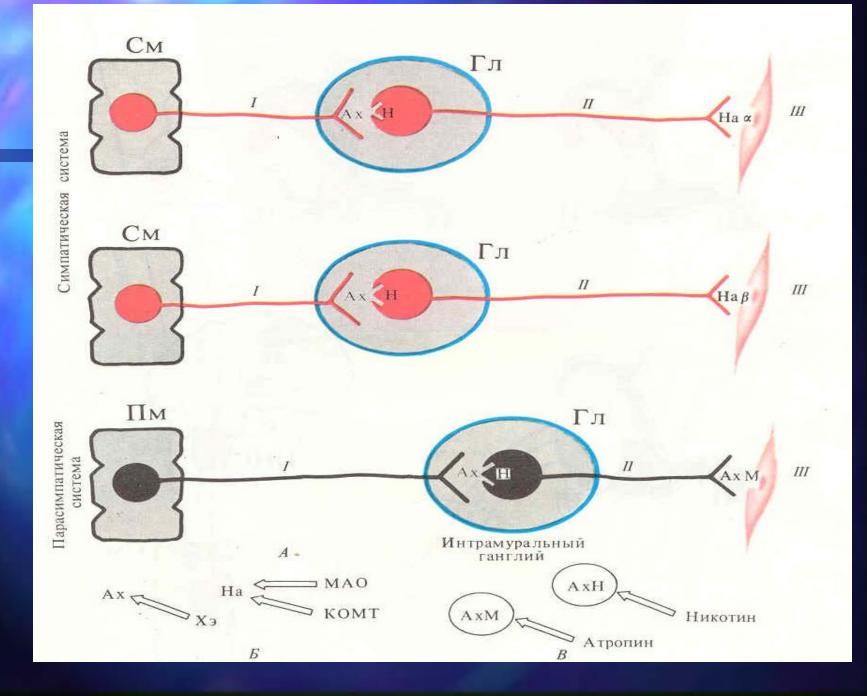
Вегетативная нервная система (ВНС)

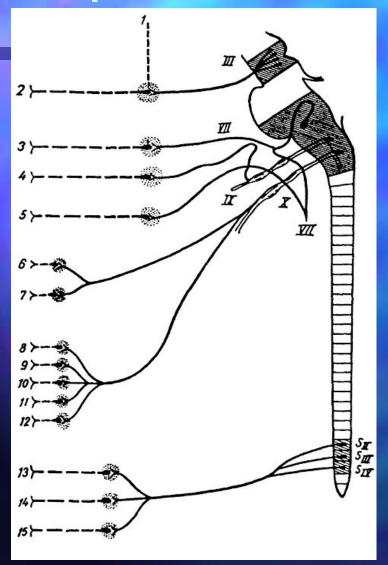

• иннервирует внутренние органы и железы, в том числе эндокринные, обеспечивая регуляцию обмена веществ в органах, скелетных мышцах, рецепторах и в самой ЦНС.

Различают три отдела вегетативной нервной системы:


- *симпатический,
- *парасимпатический
- *метасимпатический

Особенности строения ВНС


	Симпатическая н.с.	Парасимпатическая
		н.с.
1) Центры	в боковых рогах	В стволе головного
расположены	грудного и	мозга (продолговатый
	поясничного отдела	и средний мозг) и в
	спинного мозга	боковых рогах
		крестцового отдела
		спинного мозга
2)Преганглионарные	Короткие	Длинные и очень
волокна		длинные
Постганглионарные	длинные	Очень короткие
3) Медиаторы в		
синапсах	АЦХ	АЦХ
в 1-ом	Норадреналин (на	АЦХ
во 2-м	органе. От нерва к	
	рабочему органу)	••••


Симпатическая система

Центральные нейроны СС находятся от I грудного сегмента до II-IV поясничного.

Парасимпатическая система

Центральные нейроны расположены в среднем, продолговатом мозге и в боковых рогах крестцового отдела спинного мозга.

Высшие вегетативные центры.

- В передних отделах гипоталамуса локализованы ядра, которые вызывают активацию парасимпатической н.с.
- В <u>задних отделах</u> ядра симпатической н.с.
- В лимбической системе и базальных ганглиях.

• Полосатое тело, входящее в состав базальных ядер. Полосатое тело участвует в образовании сложных безусловно-рефлекторных реакций организма, где обязательны и вегетативные компоненты. Раздражение полосатого тела вызывает изменения в функционировании многих внутренних органов.

На вегетативные функции оказывает влияние и мозжечок. Он регулирует работу сердца, меняет АД, частоту и глубину дыхания, функции ЖКТ, мочевыделение, желчеобразование, обмен веществ в организме.

- Высший контроль через гипоталамические центры осуществляет кора головного мозга, особенно ее лобные и височные отделы.
- Влияние коры БП мозга на ВНС доказано методами электростимуляции отдельных областей коры.

• КБП регулирует вегетативную деятельность организма

- 1) в условиях адаптации к новым условиям существования;
- 2) при выработке новых условных рефлексов
- 3) при различных эмоциональных состояниях.

<u>Организация интегративной функции</u> <u>вегетативной нервной системы</u>.

• <u>1 уровень</u>. Периферическая часть системы, включающая преганглионарные волокна, ганглии, постганглионарные волокна.

• 2 уровень. Эффекторные нервные центры: симпатические тораколюмбальном отделе спинного мозга, сакральный отдел. Бульбарный центр парасимпатической системы. Мезенцефальный центр

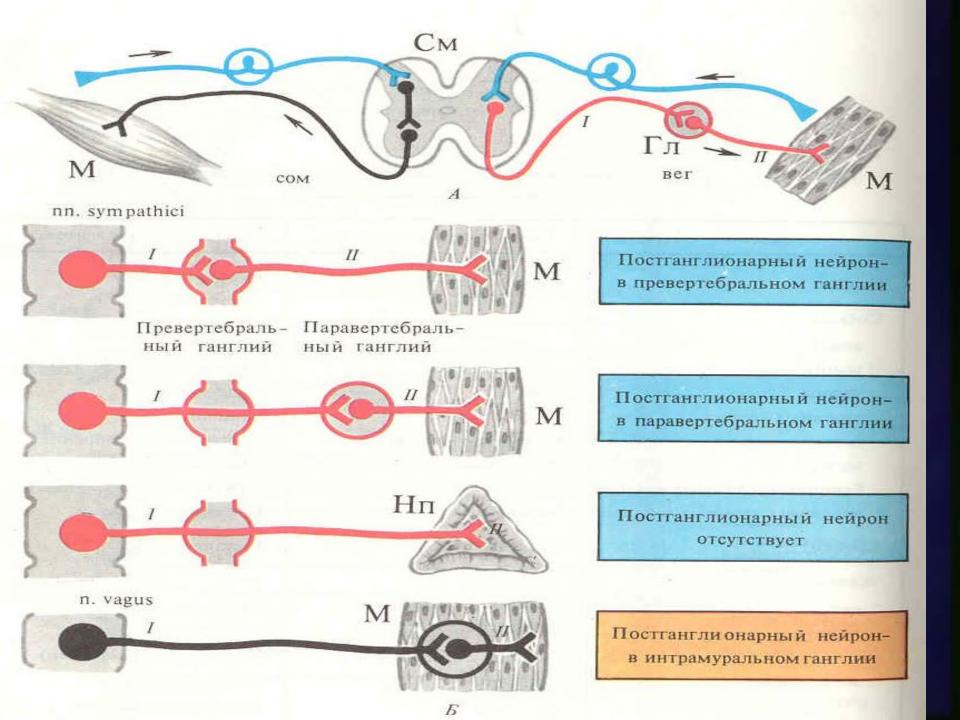
• <u>3 уровень</u>. Интеграция вегетативных функций с целью обеспечения гомеостаза. Это достигается центрами гипоталамуса и ретикулярной формации.

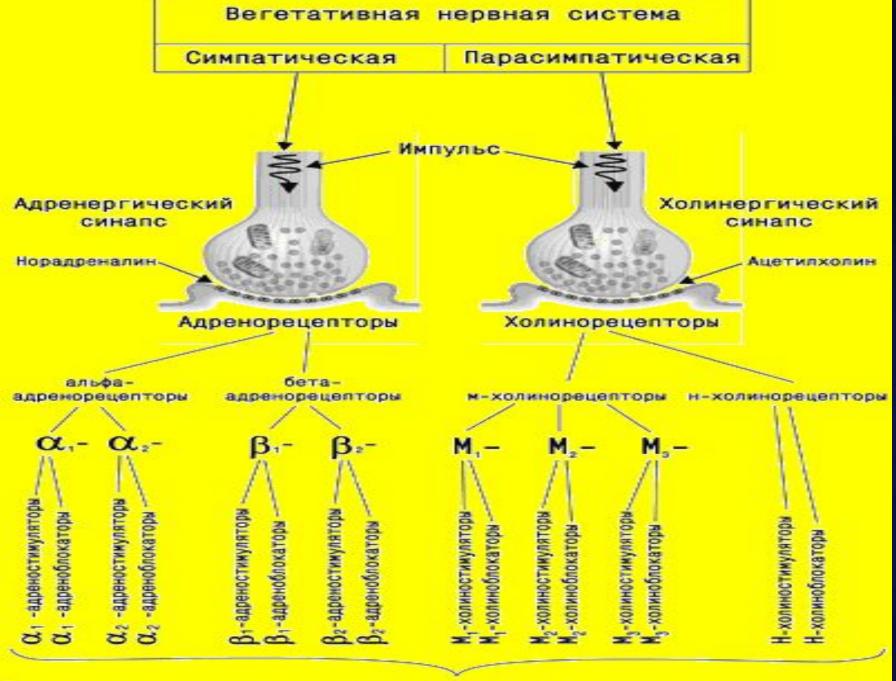
4 уровень. Кора головного мозга и особенно лимбическая система (висцеральный мозг) осуществляет уже интеграцию вегетативных функций с соматическими. Т.е. перестраиваются функции органов в соответствии с мышечными движениями, поведением человека, его высшей нервной деятельностью и психическим состоянием.

Норадреналин создает условия для появления у человека положительных эмоций, благодаря НА функционируют центры удовольствия.

 Дофамин также способствует созданию положительных эмоций.
При избытке дофамина создаются условия для шизофрении. • <u>Серотонин</u> играет роль в создании отрицательных эмоций.

Особенности иннервации органов симпатической и парасимпатической

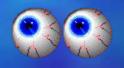

нервной системы


Симпатическая

- рогах спинного мозга грудного и мозга (продолговатом и среднем) поясничного отделов
- 1. Центр находится в боковых 1. Центр расположен в стволе и боковых рогах крестцового отдела спинного мозга.

Парасимпатическая

- коротки, длинные (прерывание в короткие (прерывание вегетативных ганглиях – непосредственно в органе или симпатического нервного вблизи органа). ствола)
- 2. Преганглионарные волокна 2. Преганглионарные волокна постганглионарные длинные, а постганглионарные
- 3.B синапсах образуется 3. В синапсах медиатор АЦХ и НА - на органе. медиатор Ацх-Ацх
 - образуется


• Холино- и адренорецепторы неоднородны и различаются чувствительностью к некоторым химическим веществам. Так, среди холинорецепторов выделяют мускаринчувствительные (м-холинорецепторы) и никотинчувствительные (н-холинорецепторы) по названиям естественных алкалоидов, которые оказывают избирательное действие на соответствующие холинорецепторы. Мускариновые холинорецепторы, в свою очередь, могут быть M_1 -, M_2 - и M_3 -типа в зависимости от того, в каких органах или тканях они преобладают.

• Адренорецепторы, исходя из различной чувствительности их к химическим соединениям, подразделяют на альфа- и бетаадренорецепторы, которые тоже в зависимости от локализации имеют несколько разновидностей.

Сеть нервных волокон пронизывает все человеческое тело, таким образом, холино- и адренорецепторы расположены по всему телу. Нервный импульс, распространяющийся по всей нервной сети или ее пучку, воспринимается как сигнал к действию теми клетками, которые имеют соответствующие рецепторы.

• И, хотя холинорецепторы локализуются в большей степени в мышцах внутренних органов (желудочно-кишечного тракта, мочеполовой системы, глаз, сердца, бронхиол и других органов), а адренорецепторы – в сердце, сосудах, бронхах, печени, почках и в жировых клетках, обнаружить их можно практически в каждом органе. Воздействия, при реализации которых они служат посредниками, очень разнообразны.

Спасибо за внимание!

