Гидродинамическая ирригация корневых каналов.

Выполнила: Кияниченко Юлия 531 группа

Определение. Цели.

Ирригация корневых каналов зубов – один из важнейших этапов при проведении эндодонтического лечения, оказывающий существенное влияние на его прогноз.

Ирригация преследует две важные цели:

- 1. Очищение системы корневых каналов за счет химического растворения органических и неорганических остатков, а также механического их вымывания струей жидкости;
- 2. Дезинфекция системы корневых каналов.

Классификация.

Все ирригационные техники можно разделить на 5 групп (Van der Sluis, 2007):

- Ручная;
- Ультразвуковая;
- Звуковая (EndoActivator);
- Лазерная (раствор активизируется лазером);
- Гидродинамическая (RinsEndo, EndoVac).

1. Средства на основе гипохлорита натрия.

Гипохлорит натрия (NaOCI) обладает одновременно окислительными и гидролизирующими свойствами: он оказывает бактерицидный и протеолитический эффекты. Популярность NaOCI в качестве ирригационного раствора для эндодонтии определяется общедоступностью и дешевизной раствора. Во многих исследованиях продемонстрированы его антисептические и растворяющие свойства. В частности, NaOCI оказывает быстрый бактерицидный эффект в отношении вегетирующих форм, спорообразующих бактерий, грибов, простейших и вирусов (включая ВИЧ, ротавирус, HSV-1 и -2, вирусы гепатита)

- 1. ГИПОХЛОРАН -3 («Омега-Дент»). Раствор гипохлорита натрия 3,25% для обработки корневых каналов.
- 2. ГИПОХЛОРАН 5 («Омега-Дент»). Раствор гипохлорита натрия 5% для обработки корневых каналов.
- 3. ГИПОХЛОРИТ НАТРИЯ 3% раствор («ВладМиВа»).
- 4. БЕЛОДЕЗ («ВладМиВа»). Материал стоматологический на основе стабилизированного раствора гипохлорита натрия для химического расширения и антисептической обработки корневых каналов зубов. Выпускается в виде жидкости (3%, 5,2% и 10%) и геля (3%).
- 5. PARCAN («Septodont»). Раствор гипохлорита натрия с высокой степенью очистки, стабилизированный, закрытый пробкой и готовый к применению. 3% концентрация дает возможность добиться хорошего химического и бактерицидного действия без цитотоксичного эффекта на уровне апекса.

2. Средства на основе хлоргексидина.

Хлоргексидин является одним из наиболее активных местных антисептических средств. Он оказывает быстрое и сильное бактерицидное влияние на грамположительные и грамотрицательные бактерии. В том числе обладает высокой активностью в отношении микрофлоры корневых каналов зубов. Препарат стабилен и после обработки тканей в течение некоторого времени сохраняется там, продолжая оказывать бактерицидный эффект.

- БЕЛСОЛ («ВладМиВа»). Набор стоматологических жидкостей «Белсол» предназначен для антисептической и профилактической обработки полости рта. «Жидкость № 2» (хлоргексидина биглюконат 2%), предназначенная для профилактических полосканий и антисептических промываний слизистой поверхности при гингивите и начальных формах пародонтита, а также для промывания инфицированных корневых каналов.
- 2. R4 («Septodont»). 20% раствор на основе диглюконата хлоргексидина для антисептической обработки корневых каналов.

3. Средства на основе йода.

ЙОДИНОЛ. Препарат обладает выраженным бактерицидным и фунгицидным действием, стимулирует защитные силы тканей периодонта и ускоряет их репаративную регенерацию. За счет соединения с поливиниловым спиртом активный йод выделяется постепенно, обеспечивая пролонгированное лечебное действие. Кроме того, уменьшается раздражающее действие йода на ткани

4. Окислители.

К промывным жидкостям можно также отнести 3% раствор перекиси водорода. Соприкасаясь с живой тканью или органическими веществами, перекись водорода сразу же диссоциирует на молекулярный кислород и воду. Быстрое выделение пузырьков газа, оказывающего слабое бактерицидное действие, способствует механической очистке канала от некротизированных тканей и дентинных стружек.

Для усиления очищающего и бактерицидного действия растворов гипохлорита натрия и перекиси водорода рекомендуется их поочередное применение при промывании канала. Между этими растворами возникает бурная реакция с выделением свободного кислорода и хлора, в результате чего микроорганизмы уничтожаются и вымываются из канала.

Из препаратов *нитрофуранового ряда* в эндодонтии применяют 0,5% раствор фурацилина, 0,1-0,15% растворы фурадонина, фурагина и фуразолидона.

Для промывания корневых каналов при лечении периодонтитов применяются также водные растворы **четвертичных аммониевых соединений** — 0,1 % раствор декамина и 0,15% раствор декаметоксина.

треоования, предъявляемые к средствам медикаментозной обработки корневых каналов.

- быть бактерицидным для микроорганизмов, находящихся в корневых каналах;
- быть безвредным для периапикальных тканей;
- не обладать сенсибилизирующим действием и не вызывать появления резистентных форм микроорганизмов;
- оказывать быстрое действие и достаточно глубоко проникать в дентинные канальцы;
- не терять свою эффективность в присутствии органических веществ;
- по возможности не обладать запахом и специфическим вкусом;
- быть химически стойким и сохранять активность при продолжительном хранении.

Наконечник RinsEndo.

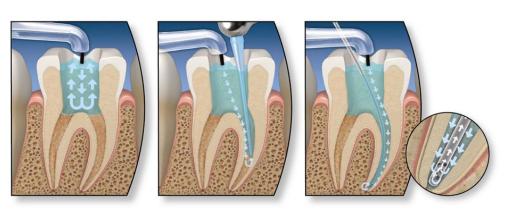
Используется при инструментальной обработке корневого канала методом Crown Down, в том числе с использованием машинных инструментов: ProFile, GT File, ProTaper, формирующие оптимальную апикальную конусность (6-8%). Жидкость проникает даже в искривленные корневые каналы.

Наконечник RinsEndo.

Дезинфекция наконечником RinsEndo объединяет гидродинамическую активацию с инновационной технологией всасывания и обеспечивает высокую динамику полоскания с эффективным обменом жидкости. Наконечник циклически высасывает промывочный раствор из подсоединенного шприца и через специальную одноразовую канюлю вводит его глубоко в корневой канал - к самой верхушке корня. Таким образом дезинфицирующий эффект раствора проявляется по всей области корневого канала.

Ультразвуковое

RinsEndo


Ручное промывание

Ирригационная система EndoVac для антисептической обработки каналов.

Принцип действия системы EndoVac основан на движении ирригационного раствора за счет создания отрицательного давления в корневом канале. Одна из насадок, подающая ирригационный раствор, вводится в полость зуба на небольшую глубину, в то время как другая канюля, осуществляющая аспирацию, вводится в корневой канал на всю рабочую длину. В результате подаваемый раствор за счет отрицательного давления проникает в корневой канал на всю рабочую длину без риска выведения за пределы апекса.

Ирригационная система EndoVac для антисептической обработки каналов.

Советы по технике проведения ирригации корневых каналов.

- 1. После измерения длины корневого канала зуба необходимо учитывать, что ирригационная игла должна вводиться в корневой канал <u>на</u> длину канала за минусом 1 мм.
- 2. При необходимости можно слегка согнуть иглу под необходимым углом.
- 3. При проведении процедуры ирригации раствор в корневой канал не должен подаваться под большим давлением, поэтому необходимо плавно и без особых усилий нажимать на поршень шприца.

Советы по технике проведения ирригации корневых каналов.

- 4. Рядом с обрабатываемым зубом следует помещать слюноотсос, который вместе с продуктами распада быстро удалит вытекаемый обратно раствор, для исключения контакта ирригационного раствора со слизистой оболочкой полости рта.
- 5. Необходимо следить за отсутствием воздуха в шприце.
- 6. Нельзя использовать для высушивания корневого канала сжатый воздух!

Советы по технике проведения ирригации корневых каналов.

7. После окончания ирригации основные остатки раствора из корневого канала можно удалить введя иглу в корневой канал (при этом шприц дожен быть пустой — без раствора и воздуха) и слегка потянув поршень «на себя» (остатки жидкости будут всасываться в шприц). Для окончательного высушивания корневого канала необходимо использовать стерильные бумажные штифты.

СПАСИБО ЗА ВНИМАНИЕ!

