ГОМЕОСТАЗ

Болотина Ольга Дмитриевна, Преподаватель НЦПКРЗ

ПЛАН

- □ Гомеостаз понятие
- □ Водный обмен
- Осмолярность
- Дисгидрии
- □ Коллоидно-осмотическое (онкотическое) давление
- Нарушение баланса основных электролитов
- □ Кислотно-основное состояние
- Формы нарушения КОС
- Газовый состав крови
- □ Гипоксия

ПОНЯТИЕ ГОМЕОСТАЗА

Гомеостаз- постоянство внутренней среды

Гомеостаз - это относительное подвижное постоянство внутренней жидкой среды (такой, как лимфа, межклеточная жидкость) и устойчивость основных физиологических функций (работы сердечно-сосудистой системы, органов дыхания, температурной регуляции, обмена веществ) организма человека. Механизмы, поддерживающие гомеостаз на оптимальном уровне, называются гомеостатическими

ФУНКЦИИ ВОДЫ

Вода является важнейшим неорганическим компонентом организма, обеспечивающим связь внешней и внутренней среды, транспорт веществ между клетками и органами. Являясь растворителем органических и неорганических веществ, вода представляет собой основную среду развертывания метаболических процессов. Она входит в состав различных систем органических веществ

РАСПРЕДЕЛЕНИЕ ВОДЫ

Общая вода организма 60% массы тела. Она распределяется в двух основных пространствах — внутриклеточном и внеклеточном. 2/3 объема — клеточная жидкость. 1/3 — внеклеточная жидкость (интерстициальная и сосудистая)

СРЕДНИЕ ВЕЛЕЧИНЫ ПАРАМЕТРОВ ВОДНОГО БАЛАНСА ОРГАНИЗМА ЧЕЛОВЕКА

Средние величины параметров водного баланса организма человека (мл/сутки)

Потребление и образование воды		Выделение воды	
Питье и жидкая			
пища	1200	С мочой	1500
С твердой пищей	1100	С потом	500
Эндогенная		С выдыхаемым	
«вода окисления»	300	воздухом	400
		С калом	100
Итого			
Поступление	2500	Выделение	2500

ПОНЯТИЕ ОСМОЛЯРНОСТИ

Движение воды через мембрану клеток зависит от разницы осмотического давления между внутрии внеклеточной жидкостью. Эту клиническую величину обозначают как осмолярность (моль/л) N – 285-310

Осмотическое давление плазмы в основном (80-90%) создают диссоциированные электролиты, в основном натрий и хлор, но также и содержащиеся в плазме глюкоза, мочевина, а также вещества, поступающие в плазму извне (маннитол, сорбитол, алкоголь и др.)

ЗАКОН ДВИЖЕНИЯ ВОДЫ

нормальной ситуации осмолярность внутриклеточной, интерстициальной жидкости и плазмы одинаковы. Равновесие это саморегулирующееся. динамическое И Саморегуляция осуществляется за перехода воды из сектора с меньшей в сектор с большей осмолярностью, благодаря чему и наступает равновесие

ДИСГИДРИИ

Дегидратация — состояние, при котором в организме снижено общее количество воды

Две основных причины — дегидратация и гипергидратация. Группы определяются на основании клинических и лабораторных данных. В каждой группе различают формы дисгидрий, зависящие от перераспределения жидкости в клеточном и внеклеточном пространствах. Каждую группу составляют три вида дисгидрий: изотоническую (изоосмолярную), гипертоническую (гиперосмолярную) и гипотоническую (гипоосмолярную)

ДЕГИДРАТАЦИЯ ИЗООСМОЛЯРНАЯ

Потеря жидкости организмом сопровождается утратой и всего комплекса осмотически активных электролитов. Поскольку осмолярность плазмы, интерстициального и внутриклеточного пространства одинакова, отмечается равномерный дефицит ее во всех этих средах

КЛИНИЧЕСКИЕ ПРИЗНАКИ

- гиповолемии снижение объема циркулирующей крови, артериального давления , центрального венозного давления, учащение пульса, метаболический и дыхательный ацидоз
- общей дегидратации апатия, адинамия, кома, снижение тургора кожи, сухость слизистых оболочек, олигурия, анурия

КОРРЕКЦИЯ

Она достигается в основном инфузией нормоосмолярной жидкости (раствор Рингера, лактасол и др.). При явлениях гиповолемического шока с целью стабилизации гемодинамики вначале вводят 5% раствор глюкозы , нормоосмолярные электролитные растворы, а затем коллоидный раствор

ДЕГИДРАТАЦИЯ ГИПЕРОСМОЛЯРНАЯ

Развивается в тех случаях, когда потеря воды организмом опережает потерю электролитов, что ведет к повышению осмолярности плазмы. Жидкость из клеточного пространства перемещается в интерстициальное и затем в сосудистое пространство, что приводит к развитию клеточной дегидратации

КЛИНИЧЕСКИЕ ПРИЗНАКИ

- Клеточной дегидратации выраженная жажда, повышение температуры тела, астения, расстройства нервной системы
- Внеклеточной дегидратации умеренная гипотония, учащение пульса, снижение объема циркулирующей крови, артериального давления, центрального венозного давления, повышение гематокрита, потеря тургора кожи, сухость слизистых оболочек, олигурия

КОРРЕКЦИЯ НАРУШЕНИЙ

направлена не только на ликвидацию причины гипертонической дегидратации, но и на восполнение клеточного дефицита жидкости путем инфузии 5% раствора глюкозы с при бавлением до 1/3 объема изотонического раствора NaCl и коллоидными растворами (гелофузин, растворы крахмалов)

ДЕГИДРАТАЦИЯ ГИПООСМОЛЯРНАЯ

Она развивается преимущественно при потере электролитов, когда осмолярность снижается. При общей потере жидкости она из-за разности осмолярности интерстициального и клеточного пространства в большем объеме находится в клеточном пространстве

КЛИНИЧЕСКИЕ ПРИЗНАКИ

- Внеклеточной дегидратации нарушение гемодинамики снижение артериального давления, центрального венозного давления, объема циркулирующей крови, учащение пульса, олигурия, метаболический и дыхательный ацидоз
- Клеточной гипергидратации отек мозга, судороги, кома, рвота

КОРРЕКЦИЯ

При умеренно выраженных нарушениях достаточно ограничиться вливанием 5% раствора глюкозы с изотоническим раствором натрия хлорида. При значительном дефиците Na⁺ возмещение половины дефицита осуществляется гипертоническими (молярным или 5%) раствором натрия хлорида, а при наличии ацидоза коррекцию проводят 4,2% раствором натрия гидрокарбоната. В дальнейшем назначают изотонические электролитные растворы: раствор Рингера, лактасол

ГИПЕРГИДРАТАЦИЯ ИЗООСМОЛЯРНАЯ

Она развивается при общем увеличении количества воды в организме с равномерным ее распределением в клеточном, интерстициальном и сосудистом пространствах в условиях, когда осмолярность жидкости всех трех секторов одинакова. Клиника зависит от гиперволемии данного пространства

КЛИНИЧЕСКИЕ ПРИЗНАКИ

- □ Клеточной гипергидратации отек мозга
- □ Интерстициальной астения, суставные боли, анорексия, отеки
- Внутрисосудистой признаки сердечнососудистой недостаточности, гипертензия и отек легких

ГИПЕРГИДРАТАЦИЯ ГИПЕРОСМОЛЯРНАЯ

Она возникает в тех случаях, когда при общем увеличении количества жидкости в организме большая часть ее распределяется во внеклеточном пространстве. Осмолярность внеклеточного пространства по сравнению с клеточным выше. Ведущим синдромом в клинической картине является гиперволемия. В тяжелых случаях прослеживаются синдромы клеточной дегидратации

КЛИНИЧЕСКИЕ ПРИЗНАКИ

- Гиперволемии сердечно-сосудистая недостаточность, повышение артериального давления, центрального венозного давления, объема циркулирующей крови, гипертонические кризы, отек легких, общие и локальные отеки, почечная недостаточность
- Клеточной дегидратаци жажда, гипертермия, неврологические и психические расстройства делирий, кома

ГИПЕРГИДРАТАЦИЯ ГИПООСМОЛЯРНАЯ

Она наблюдается тогда, когда при общем увеличении жидкости в организме большое количество ее скапливается в клеточном пространстве, т.к. осмолярность клетки выше, чем в плазме

КЛИНИЧЕСКИЕ ПРИЗНАКИ

- клеточной гипергидратации неврологические и психические расстройства, апатия, вялость, нарушение сознания, тошнота, рвота, судороги
- □ внеклеточной гипергидратации отек легких, сердечная недостаточность, локальные и общие отеки

КОРРЕКЦИЯ ГИПЕРГИДРАТАЦИИ

- Внутривенное введение концентрированного раствора натрия хлорида в первые 6-12 часов с последующим повторением введения такой же дозы этого раствора в течение суток
- При возможной декомпенсации сердечной деятельности назначают фуросемид с одновременным введением для коррекции потерь Na⁺ и К⁺ гипертонических растворов раствора калия хлорида и раствора натрия хлорида
- Методом выбора терапии гипертонической гипергидратации является ультрафильтрация

КОЛЛОИДНО-ОСМОТИЧЕСКОЕ (ОНКОТИЧЕСКОЕ)ДАВЛЕНИЕ -КОД

Диффузия воды происходит не только между клеточным в внеклеточным пространствами, но и во внеклеточном пространстве между разными секторами, например, между сосудистым и интерстициальным

РОЛЬ КОЛЛОИДНО-ОСМАТИЧЕСКОГО ДАВЛЕНИЯ В РАСПРЕДЕЛЕНИИ ЖИДКОСТИ

Распределение воды по обе стороны стенки капилляров происходит за счет онкотического давления, создаваемого белками плазмы, и общего гидродинамического давления в сосудах. Стенки капилляров непроницаемы для белков и других коллоидов. Концентрация альбуминов является основным компонентом, определяющим величину КОД, оно также зависит от наличия в плазме глобулинов и фибриногена

НАРУШЕНИЕ БАЛАНСКА НАТРИЯ

Нарушения водного обмена связаны с изменениями концентрации натрия, т.к. именно он является основным компонентом, регулирующим осмолярность плазмы

50% натрия находится во внеклеточной жидкости и 14% - в клеточной жидкости. Клеточные мембраны легко проницаемы для воды, но не для натрия. Натрия в клетке очень мало, что обусловлено размером его молекулы, «работой» калиево-натриевого насоса. Таким образом, натрий —внеклеточный электролит, и объем внеклеточной жидкости зависит в основном от содержания в ней натрия

ГИПЕРНАТРИЕМИЯ

Она сопровождается гиперосмолярностью плазмы и оттоком жидкости из внутриклеточного пространства во внеклеточное

Причины: потери гипотонической жидкости - гипервентиляция, потоотделение, диарея, гипертермия, инфекция и др.; заболевания нервной системы - опухоль, травма, сосудистые расстройства; эндокринные заболевания; нарушения функции почек; избыточное поступление натрия; прием кортикостероидов в повышенной дозе

КЛИНИЧЕСКАЯ КАРТИНА

Она обусловлена преимущественно клеточной дегидратацией - жажда, чувство страха, психическая депрессия, кома, нарушения кровообращения

В поздних стадиях зависит от вида нарушения внеклеточного объема - дегидратация или гипергидратация

ГИПОНАТРИЕМИЯ

Она вызывает гипоосмотическое состояние, что ведет к оттоку жидкости из внеклеточного пространства в клеточное. Гипонатриемия может не сопровождаться снижением осмолярности плазмы, если в плазме накапливается какое-то другое осмотическое вещество, например, глюкоза, мочевина, алкоголь, маннитол

ПРИЧИНЫ

- Потери гипертонической жидкости рвота, диарея, свищи, секвестрация
- Потери натрия через кожу гипертермия, потоотделение; полиурия, форсированный диурез
- □ Перемещение натрия в клетку гипоксия, ацидоз
- Недостаточное поступление натрия
- Гипергидратация и гемодилюция

КЛИНИЧЕСКАЯ КАРТИНА

Она обусловлена преимущественно клеточной гипергидратацией - слабость, анорексия, ступор, судороги, головная боль, кома, расстройство сознания, снижение сухожильных рефлексов, симптомы внеклеточной дегидратации или гипергидратации

КАЛИЙ

Он является основным катионом внутриклеточной жидкости. 95-98% калия внутриклеточная жидкость (75%-мышцы, 14% -кожа, 7% - эритроциты, 2% - печень). 2% калия — во внеклеточной жидкости. Клеточная мембрана обладает высокой проницаемостью для калия и низкой —для натрия

ГИПЕРКАЛИЕМИЯ

Она возникает при общем повышении количества калия в организме или относительном перераспределении его между внутриклеточным и внеклеточным пространствами

ПРИЧИНЫ

- □ Почечная недостаточность
- □ Обширная травма, ожоги
- Стресс, шок, интоксикация, гипертермия, крашсиндром
- Декомпенсированный метаболический ацидоз
- Надпочечниковая недостаточность
- Быстрое и чрезмерное введение калия
- Гемолиз крови, гемотрансфузия консервированной крови
- □ Гликозидная интоксикация

КЛИНИЧЕСКИЕ ПРИЗНАКИ

- Центральная нервная система –слабость, усталость, сопор, делирий
- Сердечно-сосудистая система —снижение артериального давления, аритмия, мерцание предсердий, остановка сердца в диастолы
- □ Гладкая мускулатура –рвота, понос, кишечные спазмы
- □ Периферические нервы снижение сухожильных рефлексов, парестезии, мышечные подергивания
- □ Метаболический ацидоз
- Олигурия, анурия

ГИПОКАЛИЕМИЯ

Это снижение уровня калия <3-3,5 ммоль/л. Почки обладают слабой реабсорбционной способностью в отношении калия и его потери находятся в прямой зависимости от объема диуреза

ПРИЧИНЫ

- □ недостаточное поступление калия
- чрезмерные потери калия- рвота, диарея, свищи, желудочный зонд, полиурия, форсированный диурез
- повышенное содержание минералокортикоидов в крови
- метаболический алкалоз

КЛИНИЧЕСКИЕ ПРИЗНАКИ

- □ Центральная нервная система апатия, раздражительность, психоз
- Сердечно-сосудистая система снижение артериального давления, нарушение ритма сердца- параксизмальная тахикардия, фибрилляция желудочков сердца, остановка сердца в систоле
- Гладкая мускулатура парез кишечника, рвота, метеоризм, анорексия
- Скелетная мускулатура слабость, утомляемость, паралич дыхательной мускулатуры
- Периферические нервы астения, парестезии, арефлексия, регидность, тремор
- □ Метаболический алкалоз

КИСЛОТНО-ОСНОВНОЕ СОСТОЯНИЕ (КОС)

Это один из важных компонентов гомеостаза организма, характеризующийся концентрацией водородных ионов [H⁺]. Оно определяет стабильность протекания основных физиологических процессов в организме. Под КОС понимают определенное соотношение между [H⁺] и [OH⁻] ионами крови

МЕХАНИЗМЫ ПОДДЕРЖАНИЯ КИСЛОТНО-ОСНОВНОГО СОСТОЯНИЯ (КОС)

Постоянство КОС поддерживается сложными системами регуляции, главные из них - буферные системы крови и тканей (смесь слабой кислоты и ее соли, белки крови) и физиологические системы (легкие, почки и др.)

Основными буферными системами организма, которые находятся во всех жидкостных секторах организма, являются:

- гидрокарбонатная
- гемоглобиновая
- □ белковая
- офосфатная

МЕХАНИЗМЫ ПОДДЕРЖАНИЯ КИСЛОТНО-ОСНОВНОГО СОСТОЯНИЯ (КОС)

При истощении буферных систем для поддержания КОС начинают активизироваться физиологические системы организма. Главные из них - легкие, почки, печень, желудочнокишечный тракт. Для поддержания устойчивого равновесия между содержанием кислот оснований легкие выводят или задерживают СО, а почки осуществляют экскрецию продуктов метаболизма, задерживают или усиливают выделение оснований

ОСНОВНЫЕ ПОКАЗАТЕЛИ КИСЛОТНО-ОСНОВНОГО СОСТОЯНИЯ (КОС)

Выраженные нарушения КОС могут явиться причиной развития критического состояния

Клиническая оценка КОС организма проводится в основном на основании степени изменения традиционных показателей: pH, $PaCO_2$, $BEecf\ [HCO_3^-]$ плазмы крови и клинических данных

Концентрацию водородных ионов отражает показатель **рН** крови. Этот показатель изменяется при наличии декомпенсированных нарушений КОС и может свидетельствовать только о сдвигах в сторону ацидоза или алкалоза. Для оценки состояния больного и правильного выбора методов интенсивной терапии важны сведения о КОС

ФОРМЫ НАРУШЕНИЙ КИСЛОТНО-ОСНОВНОГО СОСТОЯНИЯ

Нормальное соотношение оснований / кислота 20/1. При изменении этого соотношения развивается алкалоз или ацидоз

МЕТАБОЛИЧЕСКИЙ АЦИДОЗ

Уменьшение оснований в организме вследствие нарушения метаболизма при диарее, фистулах кишечника и желчного пузыря, язвенном колите, хронической почечной недостаточности, приеме соляной кислоты и хлористого аммония

Вытеснение бикарбоната различными эндогенными органическими кислотами (кетокислотами, образующимися при диабете, алкоголизме или голодании, молочной кислотой при гипоксии)

КЛИНИЧЕСКАЯ КАРТИНА

Нарушение периферической микроциркуляции, выраженная одышка, глубокое дыхание, повышение температуры тела, снижение диуреза и артериального давления, возможна аритмия

МЕТАБОЛИЧЕСКИЙ АЛКОЛОЗ

Развивается при повышении содержания оснований, может быть результатом следующих причин:

- дефицита калия вследствие ограничения поступления его в организм или избыточной потере
- потери хлористоводородной кислоты (водородных ионов и хлоридов) при рвоте, диарее и пр.
- бесконтрольного длительного введения диуретиков, что приводит к усиленному выделению из организма калия и хлоридов
- применения стероидных гормонов
- □ тяжелых формах альдостеронизма
- избыточного введения гидрокарбоната и цитрата натрия

КЛИНИЧЕСКАЯ КАРТИНА

Гипокалиемия (клинические проявления), гиповолемия, полиурия, мышечная слабость, судороги

ДЫХАТЕЛЬНЫЙ (ГИПЕРКАПНИЧЕСКИЙ АЦИДОЗ)

Он возникает при гиповентиляции вследствие задержки углекислого газа и повышения PaCO₂

Дыхательный ацидоз вызывают различные комы, отравления, черепно-мозговая травма, инсульт, инфекционные болезни — ботулизм, менингоэнцефалит, столбняк

КЛИНИЧЕСКАЯ КАРТИНА

Снижение объема вентиляции, нарушение ритма дыхания, тахикардия, снижение периферического сосудистого сопротивления, расширение сосудов — гиперемия слизистых и кожных покровов, повышение артериального давления, признаки отека мозга

ДЫХАТЕЛЬНЫЙ (ГИПОКАПНИЧЕСКИЙ) АЛКОЛОЗ

Он возникает при гипервентиляции, когда чрезмерное выделение углекислого газа сопровождается вымыванием угольной кислоты из крови. Это состояние характеризуется снижением РаСО₂ и повышением рН

КЛИНИЧЕСКАЯ КАРТИНА

Глубокое частое дыхание, повышение мышечной возбудимости, появление неврологических симптомов, судороги

ГАЗОВЫЙ СОСТАВ КРОВИ

Кислород

Одной из главных, а может быть и самой главной из функций крови является перенос поглощенного легкими кислорода ко всем органам и тканям и обратная доставка полученного от них углекислого газа в легкие. Перенос этих газов кровью возможен благодаря наличию в ее составе эритроцитов гемоглобина.

Гемоглобин, присоединяя к себе кислород, превращается в оксигемоглобин. И эта реакция носит название оксигенация

ГАЗОВЫЙ СОСТАВ КРОВИ

Двуокись углерода (углекислый газ)

Углекислый газ (CO₂), или как его еще называют, двуокись углерода, является конечным продуктом обменно-окислительных процессов в клетках и тканях организма человека. Кровь транспортирует двуокись углерода к легким, где происходит выделение его во внешнюю среду в количестве 99,5 %. Остальная часть углекислого газа удаляется почками

В норме в артериальной крови напряжение двуокиси углерода (PaCO₂) колеблется в пределах от 35 до 45 мм рт. ст. Причем если этот показатель увеличивается, то говорят об артериальной гиперкапнии, если же наоборот снижается – об артериальной гипокапнии

МЕТОДЫ ОПРЕДЕЛЕНИЯ ГАЗОВ КРОВИ

В крови определяют концентрацию РаО₂ и РаСО₂ Газовый состав артериальной крови характеризуют эффективность легких как газообменного прибора, а газовый состав смешанной венозной крови, поступающей в легкие отражается состояние метаболических процессов в организме, определяют газы крови в артериальной, венозной и капиллярной крови, а также определяют артериовенозную разницу для исключения шока

Признаками тяжелой дыхательной недостаточности PaO_2 менее 60 мм.рс, $PaCO_2$ более 50 мм.рс.

При $PO_2 = PCO_2$ или PO_2 менее $PCO_2 -$ шунтирование крови, тканевая гипоксия

ГИПОКСИЯ

Это пониженное содержание кислорода в организме или отдельных органах и тканях. Гипоксия возникает при недостатке кислорода во вдыхаемом воздухе и в крови (гипоксемия), при нарушении биохимических процессов тканевого дыхания. Вследствие гипоксии в жизненно важных органах развиваются необратимые изменения. Наиболее чувствительными к кислородной недостаточности являются центральная нервная система, мышца сердца, ткани почек, печени

ВИДЫ ГИПОКСИИ

- Циркуляторная гипоксия развивается в результате сердечно-сосудистой недостаточности
- Дыхательная (гипоксическая) гипоксия развивается в результате дыхательной недостаточности
- Гемическая гипоксия развивается в результате анемии
- Тканевая (гистотоксическая) развивается в результате обменных нарушений в клетке при угнетении и блокаде дыхательных ферментов
- Смешанная гипоксия

КЛИНИЧЕСКИЕ ПРИЗНАКИ

Наиболее общими признаками являются следующие:

- Увеличение частоты и глубины дыхания,
- Возникновение одышки
- Увеличение частоты сердечных сокращений
- Нарушение функции органов и систем
- □ Цианоз

ЛИТЕРАТУРА

- 1. Анестезиология и реаниматология. Под редакцией О.А. Долиной М. Медицина 2006г.
- 2. Анестезиология и реаниматология. Учебник для средних медицинских учебных заведений / Под редакцией проф. А.И. Левшанкова —СПб: СпецЛит. 2006г.
- 3.Основы анестезиологии и реаниматологии: учеб. пособие / Под редакцией В.И. Кохно. 2изд., перераб. доп. Новосибирск: Сибмедиздат НГМУ, 2010г.

БЛАГОДАРЮ ЗА ВНИМАНИЕ