Медицинская генетика

ХРОМОСОМНЫЕ ЗАБОЛЕВАНИЯ

кафедра акушерства, гинекологии и репродуктивной медицины ФПО

Этиологическими факторами наследственных болезней являются геномные, хромосомные и генные мутации.

- Заболевания, связанные с геномными (изменение числа хромосом) и хромосомными изменения структуры хромосом) мутациями, называются хромосомными болезнями.
- Характерная черта хромосомного дисбаланса множественность пороков развития, затрагивающих разные органы и системы (черепно-лицевые дизморфии, пороки развития скелета, сердечно-сосудистой, нервной и мочеполовой систем).

- у человека обнаружено только 3 типа **геномных мутаций:** тетраплоидия, триплоидия и анеуплоидия.
- из всех вариантов анеуплоидий встречаются только трисомии по аутосомам, полисомии по половым хромосомам (три-, тетра- и пентасомии),
- из моносомий встречается только моносомия Х.
- из **хромосомных мутаций** у человека обнаружены все их типы (делеции, дупликации, инверсии, транслокации).

<u>типы хромосомных мутации</u>: числовые и структурные. Возможны в половых и соматических клетках.

Числовые мутации -

- добавочные хромосомы (трисомии)
- отсутствие одной или части хромосом (моносомии).
- увеличение на полный гаплоидный набор хромосом (три, тетраплоидии)

Структурные изменения -

- делеция утрата части хромосомы из-за 2-х разрывов и одного воссоединения X с утратой сегмента,
- дупликация удвоение сегмента хромосомы (полиплоидность по данному сегменту),
- Инверсия поворот участка X на 180 гр. и воссоединение разорванных концов в новом порядке,
- транслокация обмен сегментов между хромосомами

Транслокация реципрокная (взаимная) без потери участков вовлечённых в неё хромосом называется сбалансированной, не вызывает патологических явлении у носителя.

В результате сложных механизмов кроссинговера и редукции числа хромосом при образовании гамет у носителей сбалансированных транслокаций и инверсий могут образовываться несбалансированные гаметы, т.е. гаметы с частичной дисомией, или с частичной нуллисомией, либо с той и другой аномалией из разных участков (в норме каждая гамета моносомна).

Робертсоновские транслокации. - транслокация между двумя акроцентрическими хромосомами с потерей их коротких плеч приводит к образованию одной метацентрической хромосомы вместо двух акроцентрических их носители имеют моносомию по коротким плечам двух акроцентрических хромосом, но здоровы.

В случае концевых делеций в обоих плечах хромосомы возникает кольцевая хромосома. У индивида, унаследовавшего кольцевую хромосому от одного из родителей, будет частичная моносомия по двум концевым участкам хромосомы.

<u>Явление однородительских дисомий-</u>

у таких индивидов число хромосом по всем парам нормальное, но одна пара представлена хромосомами от одного и того же родителя, может происходить гомозиготизация по рецессивным патологическим генам, т. е. рецессивная болезнь будет получена от одного родителя. по некоторым хромосомам однородительские дисомий приводят к синдромам или внутриутробной задержке роста плода.

КЛАССИФИКАЦИЯ хромосомных заболеваний основана на нескольких принципах

- а) Этиологический, т.е. характеристика хромосомной или геномной мутации:
- I. Хромосомные болезни, связанные с аномалиями числа хромосом при сохранении их структуры.
 - 1) обусловленные числовыми аномалиями половых (X и У) хромосом (болезни Шерешевского-Тернера, Клайнфельтера).
 - 2) обусловленные числовыми аномалиями аутосом (синдромы Дауна, Патау, Эдвардса).
 - 3) обусловленные увеличением кратности полного гаплоидного набора хромосом-полиплодии.

II. Хромосомные болезни, обусловленные структурными перестройками хромосом.

Виды хромосомных аберраций:

- 1) Транслокации перенос участка хромосомы .
- 2) Инверсии разворот участка хромосомы на 1800.
- 3) Делеции отрыв участка хромосомы.
- 4) Дупликации удвоение участка или целой хромосомы.

Определение типа клеток, в которых возникла мутация (в гаметах или зиготе):

- Гаметические мутации ведут к полным формам хромосомных болезней. У таких индивидов все клетки несут унаследованную с гаметой хромосомную аномалию.
- Соматические мутации если аномалия возникает в зиготе или на ранних стадиях дробления, при этом развивается организм с клетками разной хромосомной конституции (два типа и более). Это явление называется мозаицизм, а формы хромосомных болезней мозаичными. Для того, чтобы мозаичная форма по клинической картине совпадала с полной, необходимо иметь не менее 10% клеток с аномальным набором.
- с) Время возникновения мутации (в поколении):
- Спорадические случаи мутация возникла заново в гаметах здоровых родителей или на стадии зиготы.
- <mark>Наследуемые (семейные) формы</mark> когда родители уже имели подобную аномалию.

О наследуемых хромосомных болезнях говорят в тех случаях, когда мутация имеется в клетках родителя, в том числе и в гонадах.

Это могут быть и случаи трисомии. Например, у индивидов с синдромами Дауна и трипло-X образуются гаметы двух типов — нормальные и дисомные. Такое происхождение дисомных гамет — следствие вторичного нерасхождения, т.е. нерасхождения хромосом у индивида с трисомией.

Большая часть наследуемых случаев хромосомных болезней связана с наличием у здоровых родителей робертсоновских транслокаций, сбалансированных реципрокных транслокаций между двумя (реже более) хромосомами и инверсий.

Клинически значимые хромосомные аномалии в этих случаях возникли в связи со сложными перестройками хромосом в процессе мейоза (конъюгация, кроссинговер).

- Летальный или дизморфогенетический эффект хромосомных аномалий обнаруживается на всех стадиях внутриутробного онтогенеза (имплантация, эмбриогенез, органогенез, рост и развитие плода).
- Суммарный вклад хромосомных аномалий во внутриутробную гибель (после имплантации) у человека составляет 45%.
- Среди перинатально погибших плодов частота хромосомных аномалий составляет 6%.
- Хромосомные аномалии возникают в соматических клетках постоянно с невысокой частотой (около 2%). В норме такие клетки элиминируются иммунной системой.
- Однако в некоторых случаях (активация онкогенов при транслокациях, делециях) хромосомные аномалии являются причиной злокачественного роста.

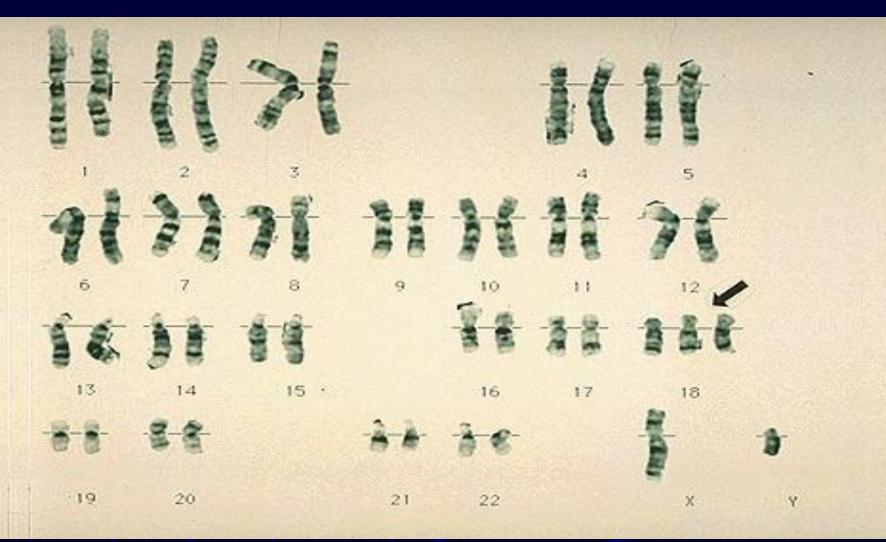
для точной диагностики хромосомной болезни необходимо определить:

- 1) тип мутации;
- 2) вовлечённую в процесс хромосому;
- 3) форму (полная или мозаичная);
- 4) вид болезни (спорадический случай или наследуемая форма).

Такая диагностика возможна только при цитогенетическом исследовании, проводимом у пациента, а иногда и у его родителей и сибсов.

Главные эффекты хромосомных аномалий проявляются в двух связанных между собой вариантах: летальности и врождённых пороках развития.

Имеются убедительные свидетельства тому, что патологическая роль хромосомных аномалий начинает проявляться уже со стадии зиготы.


- Множественные врождённые пороки развития как главное фенотипическое проявление хромосомных болезней формируются в раннем эмбриогенезе, поэтому к периоду постнатального онтогенеза все основные пороки развития уже налицо (кроме пороков развития половых органов).
- Раннее и множественное поражение систем организма объясняет некоторую общность клинической картины разных хромосомных болезней.
- Степень отклонений в развитии организма зависит от качественной и количественной характеристики унаследованной хромосомной аномалии.

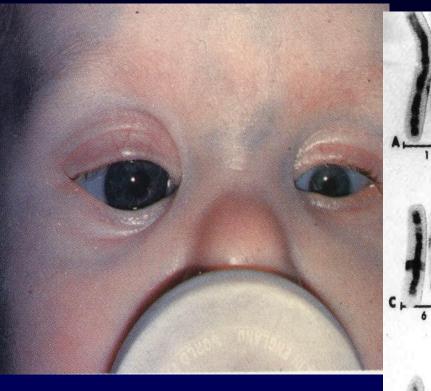
Синдром Эдвардса (синдром трисомии 18 пары) Кариотип 47 XX или XУ, 18+.

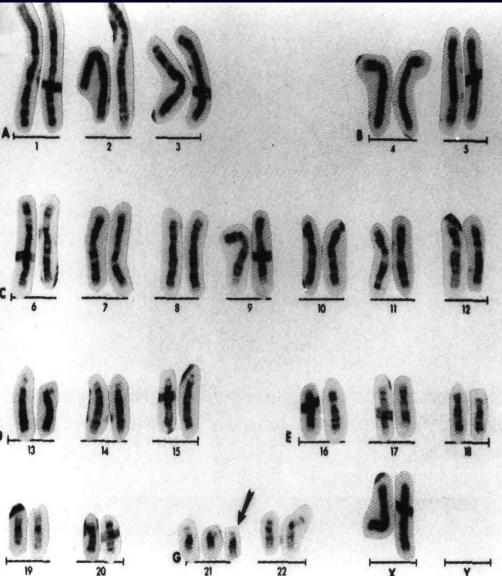
Соотношение полов - МІ: ЖЗ. Частота - 1: 8 000 н/д.

- долихоцефалия, низко посаженные деформированные уши, выступающий затылок, высокое небо, микрогнатия, короткие глазные щели, незаращение губы и неба, микростомия;
- врожденные пороки сердца (ДМЖП, ОАП);
- гипоплазия скелетной мускулатуры и подкожной жировой ткани;
- грудная клетка короткая и широкая;
- аномальное развитие стопы (конская стопа, «стопа-качалка», деформация пальцев, гипоплазия ногтей), поперечная ладонная складка, дисплазия тазобедренных суставов;
- множественные пороки развития внутренних органов (ВПС, диафрагмальные грыжи, подковообразная почка, крипторхизм, паховая, пупочная грыжи),
- Погибают в возрасте до 3-5 месяцев, в редких случаях доживают до 5 лет.

Болезнь Дауна (синдром трисомии 21 пары, монголизм)Кариотип 47 XX или 47 XУ, 21+. Соотношение полов - МІ: ЖІ. Частота - 1: 700-800.

(брахицефалия, круглое лицо, макроглоссия и открытый рот, эпикант, гипертелоризм, широкая переносица, «карпий рот», косоглазие).




- **Цитогенетические варианты синдрома Дауна** разнообразны.
- основую долю (94—95%) составляют случаи простой полной трисомии 21 как следствие нерасхождения хромосом в мейозе. При этом материнский вклад нерасхождения в эти гаметические формы болезни составляет 80%, а отцовский только 20%. Причины такой разницы неясны.
- Небольшая (около 2%) доля детей с синдромом Дауна имеет мозаичные формы D7+21/46). Примерно 3—4% больных с синдромом Дауна имеют транслокационную форму трисомии по типу робертсоновских транслокаций между акроцентриками (D/21 и G/21).
- Почти 50% транслокационных форм наследуется от родителей-носителей и 50% транслокации, возникшие de novo.

Клиническая симптоматика синдрома Дауна разнообразна

врождённые пороки развития, нарушения постнатального развития нервной системы, вторичный иммунодефицит и др. мышечная гипотония в сочетании с разболтанностью суставов, клинодактилия, характерные изменения дерматоглифики (четырёхпальцевая, или «обезьянья», складка на ладони, две кожные складки вместо трёх на мизинце, высокое положение трирадиуса и др.).


- Дети с синдромом Дауна рождаются с пренатальной гипоплазией
- Врождённые пороки внутренних органов, сниженная приспособленность детей с синдромом Дауна часто приводят к летальному исходу в первые 5 лет.

Микрофтальм , эпикант

. Каріотип індивіда з трисомією 21 (стрілка), синдром Дауна.

Рис.1.8. А та **Б.** Для дітей зі синдромом Дауна характерними є наступні риси: плоске, широке обличчя, косі очні щілини, епікантус, борозни нижньої губи. **В.** Іншою ознакою синдрому Дауна є широка кисть з одною поперечною, або мавп'ячою, борозною. Діти з синдромом Дауна часто є розумово відсталими і мають вроджені серцеві аномалії.

10 признаков

для постановки диагноза, наличие 4—5 из которых достоверно указывает на синдром Дауна:

- 1) уплощение профиля лица (90%);
- 2) отсутствие сосательного рефлекса (85%);
- 3) мышечная гипотония (80%);
- 4) монголоидный разрез глаз (80%);
- 5) избыток кожи на шее (80%);
- 6) разболтанность суставов (80%);
- 7) диспластичный таз G0%);
- 8) диспластичные (деформированные) ушные раковины D0%);
- 9) клинодактилия мизинца F0%);
- 10) четырёхпальцевая сгибательная складка (поперечная линия) на ладони D0%).
- Большое значение для диагностики имеет динамика физического и умственного развития ребёнка. При синдроме Дауна и то и другое задерживается.
- Рост взрослых больных на 20 см ниже среднего.
- Задержка в умственном развитии достигает имбецильности, если не применяются специальные методы обучения.

- Лечебная помощь детям с синдромом Дауна многопланова и неспецифична.
- Врождённые пороки сердца устраняют оперативно. Постоянно проводится общеукрепляющее лечение. Питание должно быть полноценным. Необходимы внимательный уход за больным ребёнком, защита от действия вредных факторов окружающей среды (простуда, инфекции).
- Многие больные с трисомией 21 теперь способны вести самостоятельную жизнь, овладевают неслож ными профессиями, создают семьи.

Цитогенетические варианты

- Простая полная трисомия 13 как следствие нерасхождения хромосом в мейозе у одного из родителей (главным образом у матери) встречается у 80—85% больных.
- Остальные случаи обусловлены передачей дополнительной хромосомы (точнее, её длинного плеча) в робертсоновских транслокациях типа D/13 и G/13.
- другие цитогенетические варианты (мозаицизм, изохромосома, неробертсоновские транслокации), но они встречаются крайне редко.
- Клиническая и патологоанатомическая картина простых трисомных форм и транслокационных не различается.

Дети рождаются обычно в срок, но с истинной пренатальной гипоплазией. Наблюдается высокая младенческая смертность (до 90% детей). Часть

погибает внутриутробно.

микроцефалия; аплазия мозолистого тела, гипоплазия мозжечка, микрофтальм, анофтальмия; незаращение верхней губы и неба; полидактилия, поперечная ладонная складка, повышенная гибкость сустав врожденные пороки сердца аномалии почек пороки развития органов пищеварени (незавершенный поворот кишечника, дивертикул Меккеля); ушные раковины неправильной форм низко расположены; крипторхизм, гипоплазия наружных половых органов, гипоспадия у мальчиков, удвоение матки и влагалища, - апноэ; - судорожный синдром.

Рис. 5.7. Новорождённый с синдромом Патау. Тригоноцефалия (б); двусторонняя расще лина верхней губы и нёба (б); узкие глазные щели (б); низко расположенные (б) и деформи рованные (а) ушные раковины; микрогения (а); флексорное положение кистей.

- Клиническая диагностика синдрома Патау основывается на сочетании характерных пороков развития. При подозрении на синдром Патау показано УЗИ всех внутренних органов.
- ▶ В связи с тяжёлыми врождёнными пороками развития большинство детей с синдромом Патау умирают в первые недели или месяцы (95% до І года). Однако некоторые больные живут несколько лет.
- Другие синдромы врождённых пороков развития (синдромы Меккеля и Мора, тригоноцефалия Опитца) по отдельным признакам совпадают с синдромом Патау. Решающий фактор в диагностике — исследование хромосом.
- Цитогенетическое исследование показано во всех случаях, в том числе у умерших детей. Точный цитогенетический диагноз необходим для прогноза здоровья будущих детей в семье.

Трисомия 8

Рис. 5.12. Трисомия 8 (мозаицизм). Вывернутая нижняя губа; эпикант; аномальная ушная раковина.

Рис. 5.14. Контрактуры межфаланговых суставов при трисомии 8.

Рис. 5.13. 10-летний мальчик с трисомией 8. Умственная недостаточность; большие оттопыренные ушные раковины с упрощённым рисунком.

- Среди новорождённых трисомия 8 встречается с частотой не более чем 1:5000, преобладают больные мальчики (соотношение мальчиков и девочек 5:2).
- Большинство описанных случаев (около 90%)
 относится к мозаичным формам.
- Трисомия 8 результат вновь возникшей мутации (нерасхождение хромосом) на ранних стадиях бластулы, за исключением редких случаев новой мутации в гаметогенезе. Различий в клинической картине полных и мозаичных форм не выявлено. Тяжесть клинической картины широко варьирует.

Для болезни наиболее характерны

- отклонения в строении лица, пороки опорно-двигательного аппарата и мочевой системы, выступающий лоб, косоглазие, эпикант, глубоко посаженные глаза, гипертелоризм глаз и сосков, высокое нёбо (иногда расщелина), толстые губы, вывернутая нижняя губа, большие ушные раковины с толстой мочкой, контрактуры суставов, камптодактилия, аплазия надколенника, глубокие борозды между межпальцевыми подушечками, четырёхпальцевая складка, аномалии ануса.
- При УЗИ выявляются аномалии позвоночника (добавочные позвонки, неполное закрытие позвоночного канала), аномалии формы и положения ребер или добавочные ребра.
- У новорождённых встречается от 5 до 15 симптомов и более.
- При трисомии 8 прогноз физического, психического развития и жизни неблагоприятный, хотя описаны пациенты в возрасте 17 лет. Со временем у больных проявляются умственная отсталость, гидроцефалия, паховая грыжа, новые контрактуры, аплазия мозолистого тела, новые изменения скелета (кифоз, сколиоз, аномалии тазобедренного сустава, узкий таз, узкие плечи).

Полисомии по половым хромосомам

Это большая группа хромосомных болезней, представленная различными комбинациями дополнительных X- или Y-хромосом, а в случаях мозаицизма — комбинациями разных клонов. Общая частота полисомий по X- или Y-хромосомам среди новорождённых составляет 1,5:1000—2:1000.

В основном это полисомий ХХХ, ХХҮ и ХҮҮ. Мозаичные формы составляют примерно 25%.

кратности полного гаплоидного набора хромосом - полиплоидии.

- У человека обнаружена только три типа геномных мутаций: тетраплоидия, триплоидия и анеуплоидия.

 При триплоидии кариотил у мужчин 69 XXV у женщин 69
- При триплоидии кариотип у мужчин 69 XXУ, у женщин 69 XXX.
- ▶ На полиплоидию приходится около 22,6% всех спонтанных абортов. Беременность плодом с триплоидией часто осложнается токсикозом II половины, сопровождается повышением уровня хорионического гонадотропина.
- Клиническая диагностика:
 - 1. пренатальная гипоплазия (отставание на 6-7 недель развития по сравнению с нормальными сроками);
- 2. внешние признаки: микрофтальмия, расщелина губы и неба, низко расположенные деформированные ушные раковины, гипертелоризм, синдактилия пальцев кистей, гидроцефалия;
- 3. множественные пороки развития внутренних органов.

Синдром триппо-Х D/.ХХХ)

- Среди новорождённых девочек частота синдрома составляет 1:1000. Женщины с кариотипом XXX в полном или мозаичном варианте имеют в основном нормальное физическое и психическое развитие.
- Чаще всего такие индивиды выявляются случайно при обследовании. Это объясняется тем, что в клетках две X-хромосомы гетерохроматинизированы (два тельца полового хроматина) и лишь одна, как и у нормальной женщины, функционирует.
- Как правило, у женщины с кариотипом XXX не отмечается отклонений в половом развитии, такие индивиды имеют нормальную плодовитость, хотя риск хромосомных нарушений у потомства и спонтанных абортов повышен. Интеллектуальное развитие нормальное или на нижней границе нормы. Лишь у некоторых женщин с трипло-X отмечаются нарушения репродуктивной функции (вторичная аменорея, дисменорея, ранняя менопауза и др.).
- С увеличением числа дополнительных X-хромосом нарастает степень отклонения от нормы. У женщин с тетра- и пентасомией описаны отклонения в умственном развитии, черепно-лицевые дизморфии, аномалии зубов, скелета и половых органов. Однако женщины даже с тетрасомией по X-хромосоме имеют потомство.

Синдром Клайнфельтера 47,ХХУ

Болеют только мужчины. Частота - 1:10 000

новорожд

- высокий рост
- непропорционально длинные конечности (долихомелия)
- гипоплазия яичек (99%) и полового члена (41%)
- половой инфантилизм (70%), нарушение сперматогенеза (100%), бесплодие
- склонность к ожирению (по женскому типу), гинекомастия (55%)
- снижение интеллекта, умственная отсталость (10%)

Синдром Шерешевского-Тернера 45, X Болеют только женщины. Частота - 1:10 000 новорожд.

Имеются три группы отклонений:

- 1) <u>гипогонадизм (половой инфантилизм)</u> выявляется в пубертатном периоде, аменорея в 96%, бесплодие более 96-99%.
 - 2) врожденные соматические пороки развития:
- аномалии мочевой системы (подковообразная почка, удвоение почек и мочевыводящих путей) 43-60%
- умственная отсталость 18-50%
- аномалии сердечно-сосудистой системы (ВПР коарктация) 43%
- нарушение слуха 40-53%
- нарушение зрения 22%
- 3) низкий рост, при этом: короткое туловище 97%, короткая шея 71%, крыловидная складка на шее (птеригиум) 53%, низкий рост волос на затылке 73%.

Лечение больных с синдромом Шерешевского—Тернера комплексное:

- 1) реконструктивная хирургия (врождённые пороки внутренних органов);
- 2) пластическая хирургия (удаление крыловидных складок и т.п.);
- 3) гормональное (эстрогены, гормон роста);
- 4) психотерапевтическое.


Хромосомные аберрации (структурные нарушения)

- Транслокации перенос участка из одной хромосомы в другую или в другое место этой же хромосомы.
- Исходы гибель, ВПР, высокий риск рождения больных детей. Например, слияние 2-х хромосом в одну (синдром Дауна) 21 хромосома с 14-ой или 15-ой.
- Инверсия при разрыве хромосомы в двух местах освобожденный участок разворачивается на 180% и вновь встает на прежнее место.
 - Исходы спонтанные аборты, множественные ВПР, малые аномалии развития, умственная отсталость, без аномалий.
- Делеция исчезновение оторванной части хромосом.

- Фенотипические проявления любых <u>аутосомных делеционных синдромов</u> состоят из двух групп аномалий: 1) неспецифические находки, общие для многих различных форм частичных аутосомных анеуплоидии (задержка пренатального развития, микроцефалия, гипертелоризм, эпикант, низко распололженные уши, микрогнатия, клинодактилия и т. д.);
- 2) комбинация более характерных находок, типичных для данного синдрома. Наиболее подходящее объяснение неспецифических находок (большинство из которых не имеют клинического значения) неспецифические эффекты аутосомного дисбаланса как такового, а не результаты делеций или дупликаций специфических локусов.
- **Хромосомные синдромы, обусловленные частичными** анеуплоидиями, отражают общие характеристики хромосомных болезней: врождённый характер нарушений морфогенеза (врождённые пороки развития, дизморфии), нарушение постнатального онтогенеза, тяжесть клинической картины, сокращенная продолжительность жизни.

Синдром Лежена (синдром «кошачьего крика») Кариотип 46 XX или XУ, 5р-. Соотношение полов - МІ: ЖІ. Частота - 1:40 - 50 тыс. новорожденных

- специфический плач, напоминающий «кошачье мяуканье»;
- низкая масса при рождении; умственное или физическое недоразвитие;
- микроцефалия, птоз, низкое расположение и деформация ушных раковин, кожные складки впереди уха, гипертелоризм, эпикант, антимонголоидный разрез глаз, лунообразное лицо;
- мышечная гипотония; грыжи, расхождение прямых мышц живота;
- врождённые пороки сердца и некоторых других внутренних органов, изменения костно-мышечной системы (синдактилия стоп, клинодактилия V пальца кисти, косолапость ,плоскостопие, «обезьянья складка»;).
- большинство детей умирает в раннем возрасте.

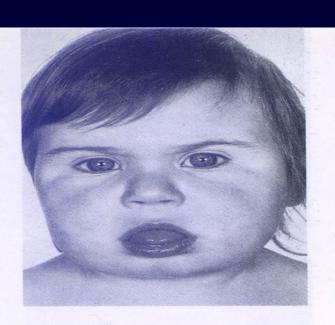
Синдром Вольф-Хирсхорна (потеря короткого плеча 4-й хромосомы) популяционная частота 1:100000

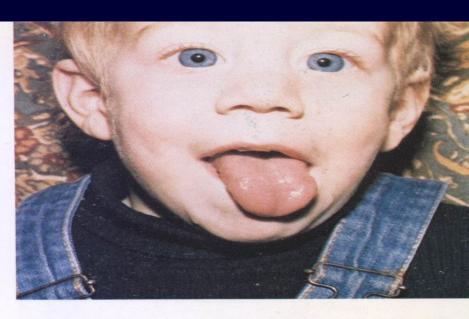
 микроцефалия, гипертелоризм, широкий нос, ассимметрия черепа, низко расположенные уши,

пороки сердца и почек у 50%,

задержка умственного развития

Синдром частичной трисомии по короткому плечу хромосомы 9 (9p+) — наиболее частая форма частичных трисомии


- задержка роста, умственная отсталость, микробрахицефалия, антимонголоидный разрез глаз, энофтальм (глубоко посаженные глаза), гипертелоризм, округлый кончик носа, опущенные углы рта, низко расположенные оттопыренные ушные раковины с уплощенным рисунком, гипоплазия (иногда дисплазия) ногтей. Врождённые пороки сердца обнаружены у 25% больных. Реже встречаются эпикант, косоглазие, микрогнатия, высокое арковидное нёбо, толстые губы, короткая шея
- Больные с синдромом 9р+ рождаютсяв СРОК-Пренатальная гипоплазия выражена умеренно (средняя масса тела новорождённых 2900—3000 г). Жизненный прогноз сравнительно благоприятный.
- Больные доживают до пожилого и преклонного возраста.
- Цитогенетика синдрома 9р+ многообразна. Значительная часть случаев
 - результат несбалансированных транслокаций (семейных или спорадических),. Описаны и простые дупликации, изохромосомы 9р.


Микроцитогенетические синдромы A:50 000—1:100 000 новорождённых).

- синдромы, обусловленные незначительными делециями или дупликациями строго определённых участков хромосом. Соответственно их называют микроделеционными и микродупликационными синдромами.
- Патологический процесс при некоторых из них развёртывается через активацию онкогенов. Клиника других синдромов обусловлена не только делециями как таковыми, но и явлениями хромосомного импринтинга и однородительских дисомий.
- Диагноз можно поставить по совокупности симптомов.

Название синдрома (или болезни)	Вовлечённый участок хромосомы	Основные проявления	
Синдром трихоринофациальный 2-го типа (Лангера—Гидеона) (рис. 5.22)	8q-23-q24	Дизморфии лицевого черепа, большие оттопыренные уши, множественные экзостозы, низкий рост, клинобрахидактилия, умеренная умственная отсталость	
Опухоль Вильмса либо Аниридия	11p-13	Отсутствие радужной оболочки, нейробластома, гонадобластома, умственная отсталость	
Ретинобластома	13q-14	Опухоль сетчатки (одно- или двусторонняя) в детском возрасте	
Синдром Прадера—Вилли (рис. 5.23)	15q-11-q12 (в хромосоме от отца)	Ожирение туловища и проксимальных отделов конечностей, дизморфии лицевого черепа, гипотония, гипогонадизм, умственная отсталость, маленькие кисти и стопы	
Синдром Ангельмана (рис. 5.24)	15q-11-q12 (в хромосоме от матери)	Необычное лицо, атаксия, гипотония, эпи- лепсия. пароксизмы смеха. микроцефалия, отсутствие речи	
Синдром Миллера—Дикера	17p-13	Агирия (лиссэнцефалия), микроцефалия, пороки сердца, пороки почек, дизморфии лицевого черепа, гипотония, судорожные припадки	
Синдром ДиДжорджи (рис. 5.25)	22q-11	Судороги (гипокальциемические), аплазия или гипоплазия тимуса, дизморфия лицевого черепа, пороки сердца	
Синдром Беквита—Видеманна (рис. 5.26)	11p+15	Грыжа пупочного канатика, макроглоссия, гигантизм, гипогликемия, микроцефалия, врождённые пороки внутренних органов	

микроцитогенетические синдромы Беквита-Видемана синдром, 11р15

пупочная грыжа, макроглоссия, гигантизм, гипогликемия, микроцефалия, пороки развития внутренних органов

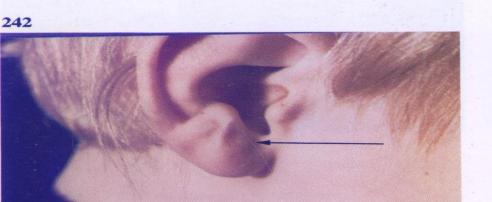


Рис. 5.22. Синдром Лангера- Рис. 5.23. Мальчик с синдро- Рис. 5.24. Девочка с синдро-Гидеона. Множественные эк- мом Прадера-Вилли. зостозы.

мом Ангельмана.

Рис. 5.25. Ребёнок с синдромом ДиДжорджи.

Габлица 8.1. Микроделеционные синдромы (модифицировано из: L.B.Jorde, J.C.Carey, M.J.Bamshad, R.L.White. Medical Genetics. Sec. ed. Mosby. — 1999. — Р. 129)

		<u> </u>
Синдром	Клинические симптомы	Локализация делеции
Прадера—Вилли	Умственная отсталость, ожирение, низкий рост, маленькие кисти и стопы, гипотония	15q11—13
Энжельмена	Выраженная умственная отсталость, отсутствие речи, атаксия, приступы беспричинного смеха	15q11—13
Лангера—Гидеона	Умственная отсталость умеренная, хрящевые экзостозы, особенное лицо	8q24
Миллера—Дикера	Лиссэнцефалия, особенное лицо, умственная отсталость	17p13.3
Аномалия ДиДжорджи (вело- кардиофациаль- ный синдром)	Аплазия тимуса, гипопаратиреоз, пороки сердца, низкий рост, расщелина неба, умственная отсталость, особенное лицо, катаракта	22q11
Синдром Вильямса	Умственная отсталость, врожденный порок сердца, особенное лицо	7q I
Аниридия/опухоль Вильмса	Аниридия, умственная отсталость, предрасположенность к опухоли Вильмса, урогенитальные аномалии	11p13

ФАКТОРЫ ПОВЫШЕННОГО РИСКА РОЖДЕНИЯ ДЕТЕЙ ХРОМОСОМНЫМИ БОЛЕЗНЯМИ

большинство случаев нерасхождения хромосом у человека проявляется спорадически, можно предполагать, что оно в определённой степени генетически детерминировано. Об этом свидетельствуют следующие факты.

- ▶ 1.Потомство с трисомией появляется у одних и тех же женщин повторно с частотой не менее 1%.
- 2.Родственники пробанда с трисомией 21 или другими анеуплоидиями имеют несколько повышенный риск рождения ребёнка с анеуплоидией.
- З.Кровное родство родителей может повышать риск трисомии у потомства.
- 4.Частота зачатий с двойной анеуплоидией может быть выше, чем предсказывается исходя из частоты отдельных анеуплоидий.
- К биологическим факторам повышения риска нерасхождения хромосом относится возраст матери, хотя механизмы этого явления неясны

- Цитогенетическое исследование, проводимое у супружеских пар, позволяет выявить кариотипические факторы риска:
- ⊚ анеуплодию (в основном в мозаичной форме),
- робертсоновские транслокации,
- сбалансированные реципрокные транслокации,
- кольцевые хромосомы, инверсии.
- Степень повышения риска зависит от типа аномалии (от 1 до 100%): например, если у одного из родителей в робертсоновскую транслокацию вовлечены гомологичные хромосомы АЗ/13, 14/14, 15/15, 21/21, 22/22), то здорового потомства у носителей таких перестроек быть не может.
- Беременности будут заканчиваться либо спонтанными абортами (во всех случаях транслокаций 14/14, 15/15, 22/22 и частично при транслокациях 13/13, 21/21), либо рождением детей с синдромом Патау А3/13) или синдромом Дауна В1/21).

