Initial Care of Burns

Checked by: Z.S. Maksutzhanovna

Presented: Zhakypova A

What is a burn?

• Cutaneous injury caused by heat, electricity, chemicals, friction, or radiation.

First Degree Burns

- Epidermis affected only
- Red or pink, dry, painful, blanches to touch
- Epidermis is intact
- Spontaneous healing within 7 days. Outer injured epithelial cells peel
- Seldom clinically significant

Superficial Partial Thickness

- Entire epidermis & portion of dermis (Papillary dermis)
- Homogenous pink
- Painful
- Blisters
- Blanches
- Hair usually intact
- Does not scar, may pigment differently

Deep partial thickness

- Reticular dermis
- Mottled red and white
- Not painful to pinprick or pressure
- Does not blanch
- Heals > 3 weeks
- Usually scars
- Need to excise and graft

Deep Partial Thickness

Full Thickness: 3rd degree

- May go into fat or deeper
- Red, white, brown, black
- Inelastic and leathery
- painless or numb
- Heals only from the periphery
- Always excise and graft

Etiology

Types of burns

Circumstances of injury

Where do burns occur

Admissions by age

Inhalation Injury

Exposure to heat and toxic products of combustion

- 50% of fire deaths are related to inhalation injuries
- Asphyxia/Carbon Monoxide displacement of oxygen

Inhalation injury diagnosis

- Closed-space fire
- Face burns

Terminology

- Inhalation injury "nonspecific"
 - Thermal injury
 - Upper airway
 - Heat and toxic fumes
 - Local chemical irritation
 - Throughout airway
 - Primarily toxic fumes
 - Systemic toxicity
 - CO

Signs and symptoms

- Lacrimation
- Cough
- Hoarseness
- Dyspnea
- Disorientation
- Anxiety
- Wheezing

- Conjunctivitis
- Carbonaceous
 sputum
- Singed hairs
- Stridor
- Bronchorrhea

Pathophysiology

- The main factor responsible for mortality in thermally injured patients
- Carbon monoxide the most common toxin
 - 200 times greater affinity
 - Competitive inhibition with cytochrome P-450

Determine Burn Severity

- % BSA involved
- Depth of injury
- Age
- Associated/pre-existing disease or illness
- Burns to face, hands, genitalia

Burn Extent

Total Body Surface Area (TBSA)?

- Rule of nines
- Lund and Browder chart
- Patients palm = about 1% TBSA

Extent of Burn :"Rule of Nines"

- Adult anatomical areas = 9% BSA (or multiple)
- Not accurate for infants or children due to larger BSA of head & smaller BSA legs.
- Burn diagrams illustrate adult – child differences

Burn Depth

Factors

- Temperature
- Duration of contact
- Dermal thickness
- Blood supply
- Special Consideration: Very young and very old have thinner skin

Burns begin at 44 degrees C

- 6 hours for burns to occur at 111 degrees F (44 C)
- 1 second of burns to occur at 140 degrees F (60 C)

Pain control

Ice Pack-----DO NOT USE EVER

- DOES NOT
 - Reverse temperature
 - Inhibit destruction
 - Prevent edema
- DOES
 - Delay edema
 - Reduce pain

Non-medication methods

- Cover burns with plastic wrap
 - Wet dressings will stick and cause more pain
 - Other burn dressings are expensive and not necessary
 - Quik Clot is expensive and will not provide any patient benefit

Medication

- Medications
 - Opioids
 - Narcotics
 - Pain medications
 - IV Analgesia

Resuscitation

IV access

- < 15% TBSA oral resuscitation
- 15 40% TBSA one large bore IV
- > 40% -- two large bore IV's
- IV's should be in the upper extremities
- Suture IV's started through burns

Field resuscitation

- Start IV with LR, through burn OK
 - < 6 years = 125mL/hr</p>
 - 6-13 years = 250mL/hr
 - >13 years = 500mL/hr

Contact Burn

Scald Burn

Flame Burn

Grease Burn

