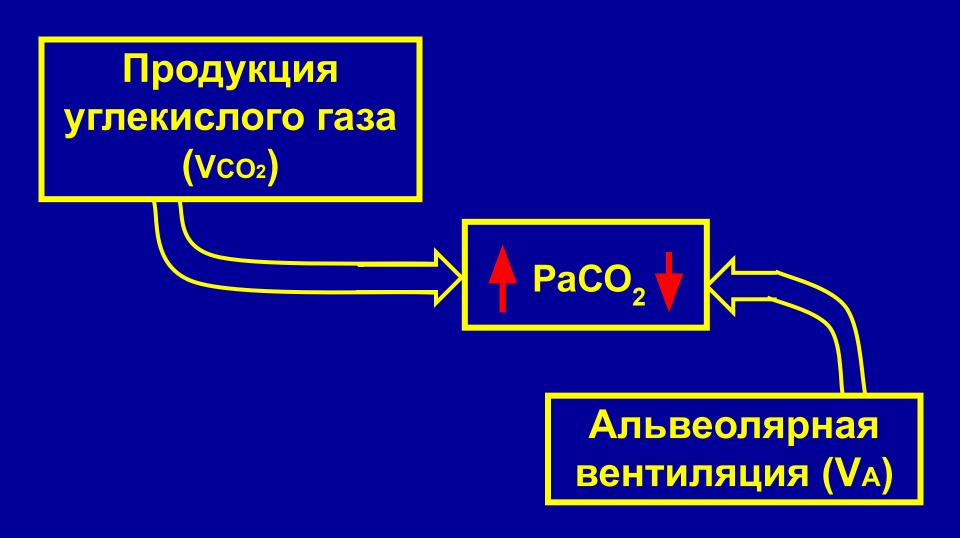

Клиническая физиология дыхания

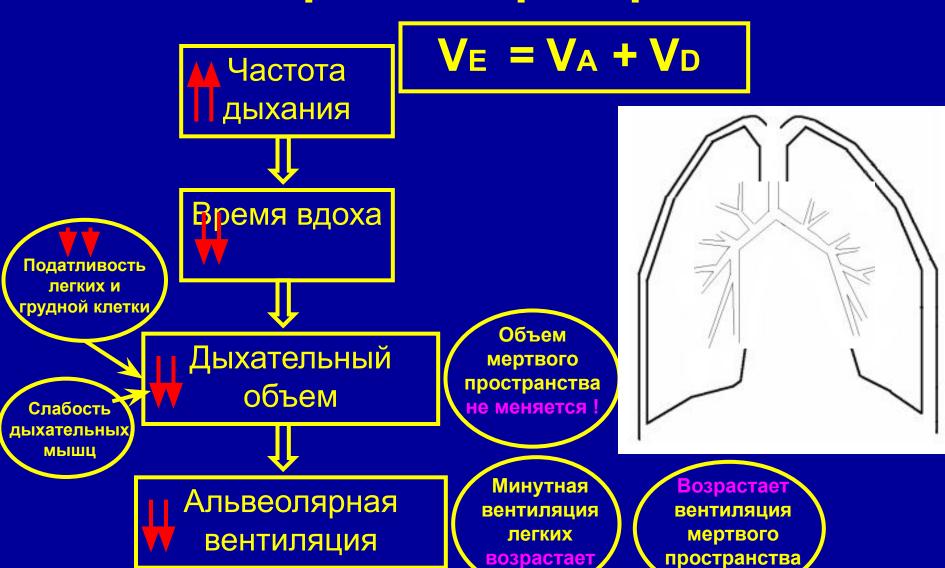

Влияние содержания углекислого газа на минутную вентиляцию легких

Выделение углекислого газа в легких

Содержание углекислого газа в артериальной крови

Парциальное давление углекислого газа

$$PaCO_2 = k \times Vco_2/VA$$

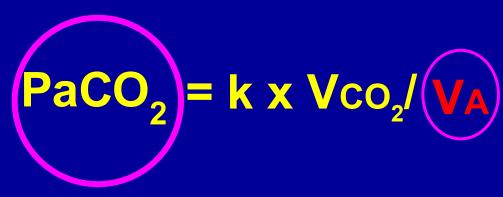

$$PaCO_2 = k \times Vco_2/(VE-VD)$$

Причины повышения содержания углекислого газа в крови (гиперкапнии)

$$PaCO_2 = k \times Vco_2/(VE - VD)$$

- Повышение продукции углекислого газа
- Снижение альвеолярной вентиляции
 - Снижение минутной вентиляции легких
 - Увеличение вентиляции мертвого пространства, в том числе, относительное

Относительное увеличение объема мертвого пространства


Относительное увеличение мертвого пространства

Частота дыхания	Дыхательный объем	Минутная вентиляция	Объем мертвого пространства	Вентиляция мертвого пространства	альвеолярная вентиляция VA = VE - VD
10	600	6 000	150	1 500	4 500

Вентиляционная дыхательная недостаточность

• снижение альвеолярной вентиляции

Вентиляционная дыхательная недостаточность

 Снижение альвеолярной вентиляции

Причины вентиляционной дыхательной недостаточности

- Угнетение дыхательного центра (центральная ОДН)
 - Медикаментозное воздействие (опиаты, барбитураты, бензодиазепины, препараты для наркоза)
 - Повреждение ствола мозга
- Нарушение проведение импульса к дыхательным мышцам и патология мышц (нейро-мышечная ОДН)
 - Синдром Гиена-Баре, БАС
 - Тяжелая полинейропатия
 - Полиомиелит, ботулизм
 - Отравление нейро-мышечными ядами (ФОС), действие миорелаксантов
 - Миопатия, миастения
 - Гипофосфатемия
 - Тяжелые нарушения обмена веществ, интоксикация
 - Шок
 - переломы ребер

Угнетение дыхательного центра (центральная ОДН)

- Снижение ЧД, ДО
- Патологический ритм дыхания
- Кома

Нейро-мышечная ОДН

- Снижение ДО
- Возрастание ЧД
- Жалобы на одышку
- Возбуждение больного

Проникновение кислорода в кровь зависит от:

- Количества кислорода в альвеолах PAO2
- Состояния альвеолярно-капиллярной мембраны
- Соотношения вентиляции и перфузии

Расчет парциального давления O_2 в альвеолах (PAO_2)

Вдыхаемый воздух Pb = **760** мм рт.ст.

FiO₂ = 0,21 или 21%

Насыщение парами воды (47 мм рт.ст.) $P = Pb - PH_2O = 760 - 47 = 713 мм рт.ст.$

 $FiO_2 = 0,21$ или 21% $PiO2 = FiO_2 \times P = 0,21 \times 713 = 150$ мм рт.ст.

Вытеснение части O_2 углекислым газом $PAO_2=PiO_2 - PACO_2/RQ$

 $PAO_2 = 150 - 40/0,8 = 100$ MM pt.ct.

 $PaO_2 = FiO_2 \times (Pb - Ph_2o) - PaCO_2/RQ$

Влияние содержания углекислого газа в крови на оксигенацию крови в легких

СО₂ вытесняет кислород в альвеолах

$$P_{A}CO_{2} \approx PaCO_{2}$$

$$\downarrow$$

$$PaCO_{2} \rightarrow PACO_{2}$$

$$PAO_2 = PiO_2 - PACO_2/RQ$$

Вентиляционная ДН

Снижение РаО₂ при снижении атмосферного давления

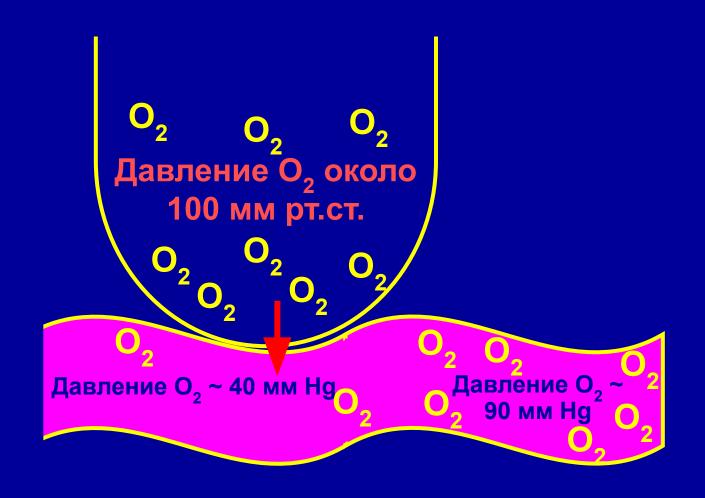
$$PAO_2 = FiO_2 \times (Pb - PH_2O) - PACO_2/RQ$$

1000 м

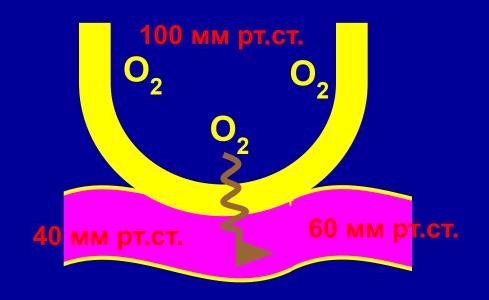
$$PAO_2 = 0.21 \text{ x } (734 - 40) - 40/0.8 = 96 \text{ mm pt.ct.}$$

2000 м

$$PAO_2 = 0.21 \text{ x } (569 - 36) - 40/0.8 = 62 \text{ mm pt.ct.}$$


• 1000 M — 734 MM pt.ct.

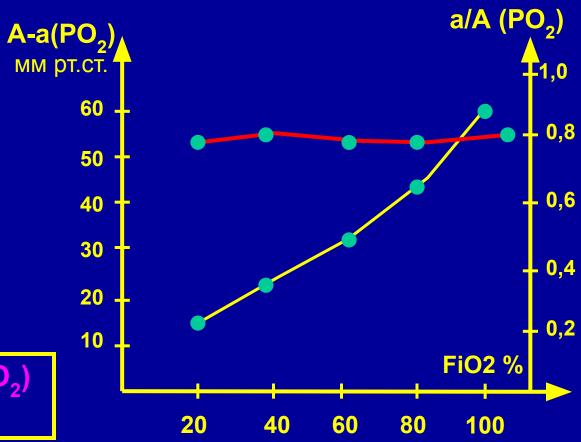
• 2000 м ____ 569 мм рт.ст.


• 3000 m — 526 mm pt.ct.

$$PAO_2 = 0.21 \text{ x } (526 - 32) - 40/0.8 = 54 \text{ mm pt.ct.}$$

Перенос кислорода через альвеолярно-капиллярную мембрану по градиенту давлений

Повреждение альвеолярно капиллярной мембраны


Показатели диффузии кислорода через альвеолярнокапиллярную мембрану

- Альвеолярно-артериальная разница (градиент): $A-a(PO_2)=P_AO_2-PaO_2$
- артериально-Альвеолярное соотношение: a/A (PO_2)= PaO_2/P_AO_2

Влияние возраста на альвеолярноартериальную разница по кислороду

возраст	PaO ₂	A-a(PO ₂)
20	84-95	4-17
30	81-92	7-21
40	78-90	10-24
50	75-87	14-27
60	72-84	17-31
70	70-81	21-34
80	67-79	25-38

Влияние концентрации кислорода во вдыхаемом воздухе на A-a(PO₂) и a/A (PO₂)

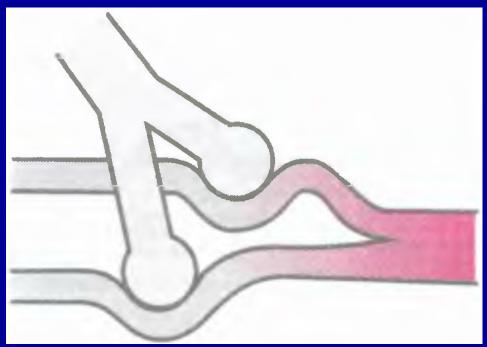
На соотношение a/A (PO₂) FiO₂ почти не влияет

Индекс оксигенации

– артериально-Альвеолярное соотношение: a/A (PO₂)= PaO_2/P_AO_2

PaO₂ ~ FiO₂

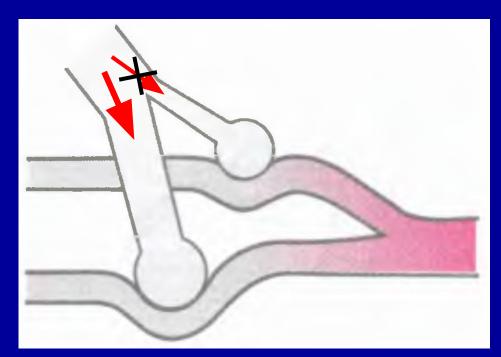
Индекс оксигенации = PaO_{2}/FiO_{2}


Индекс оксигенации - PaO₂/FiO₂

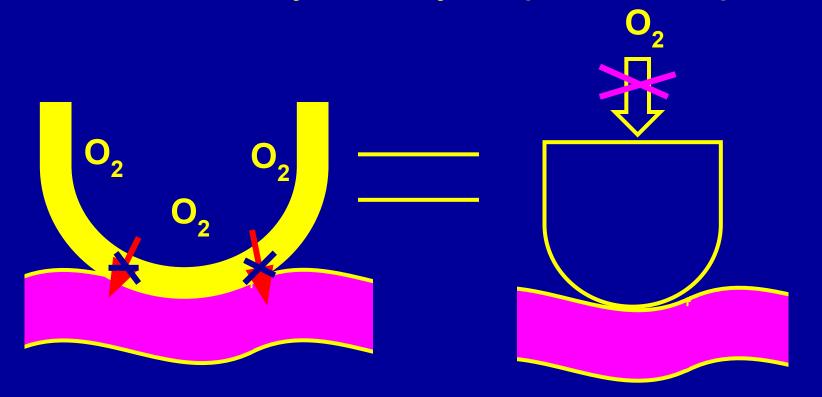
- Норма > 400
- В случае нормальной альвеолярной вентиляции:
 - PaO₂/FiO₂ < 300 острое повреждение легких
 - PaO₂/FiO₂ < 200 тяжелое повреждение легких (острый респираторный дистресс-синдром)

Вентиляционно-перфузионное соотношение (V/Q) в норме

Почти каждая функционирующая (вентилируемая) альвеола окружена функционирующим (перфузируемым) капилляром

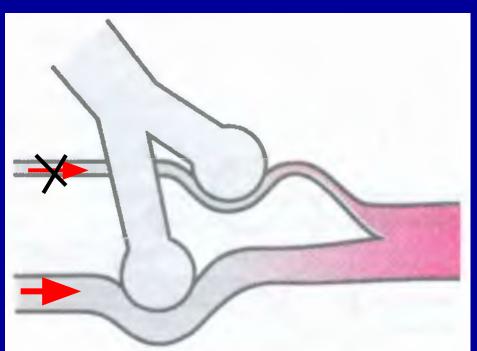

V/Q=0.85-0.95

Снижение вентиляционно-перфузионного соотношения


Преобладание перфузии: плохо вентилируемые альвеолы окружены нормально перфузируемым капилляром. Возникает шунтирование крови справа налево

(V/Q < 0.8)

Возрастание A- $a(PO_2)$ и снижение A/ $a(PO_2)$:


 Нарушение диффузии кислорода через альвеолярно-капиллярную мембрану – свидетельствует о шунтировании крови

Повышение вентиляционно-перфузионного соотношения

Преобладание вентиляции: нормально вентилируемые альвеолы окружены плохо перфузируемым капилляром. Возникает физиологическое мертвое пространство

(V/Q > 0.8)

Паренхиматозная дыхательная недостаточность

 Нарушение работы альвеолярнокапиллярной мембраны

- Шунтирование крови
- Физиологическое мертвое пространство

Паренхиматозная дыхательная недостаточность

- Тахипноэ, одышка, возбуждение
- Гипоксемия
- Изменение индексов альвелярно-капиллярного переноса:
 - Снижение a/A (PO₂), PaO_2/FiO_2
 - возрастание A-a(PO₂)
- Как правило, гипо- или нормокапния
- Снижение растяжимости легочной ткани, повышение сопротивления воздухоносных путей + тахипноэ повышение работы дыхания

Работа дыхания (W) = Δ Р х Δ V

- Обеспечивается мышцами вдоха
- Энергия тратиться на преодоление
 - сопротивления дыхательных путей воздушному потоку
 - эластического сопротивления легочной ткани

↑ сопротивления компенсируется↑ работы дыхания

В норме на работу дыхания идет 2-3% потребляемого О

При патологии на работу дыхания может идти до 40% потребляемого О₂

Виды паренхиматозной дыхательной недостаточности

- Торако-диафрагмальная ОДН
- Обструктивная ОДН
- Рестриктивная ОДН
- Перфузионная ОДН

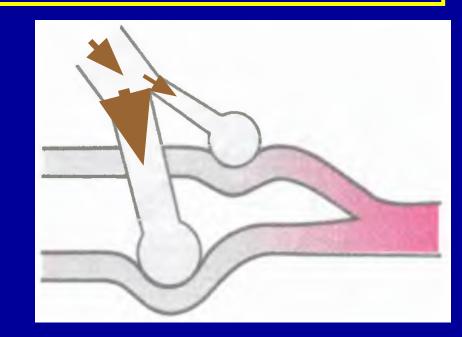
Торако-диафрагмальная ОДН

- коллабирование альвеол и ограничение их расправления в результате сдавления легких извне:
 - Пневмоторакс
 - Гидроторакс
 - Повышение внутрибрюшного давления
 - Напряженный асцит
 - Парез кишечника

Обструктивная ОДН

- возникает в результате острого нарушения проходимости дыхательных путей на любом уровне:
 - Западение языка,
 - аспирация,
 - инородное тело в гортани, трахее, бронхах
 - Опухоли с обтурацией трахеи и крупных бронхов
 - Воспалительный отек голосовых связок, подсвязочного пространства
 - Скопление мокроты в бронхах (при нарушении дренажной функции)
 - Острый бронхоспазм

Патогенез обструктивной ОДН


Обструкция дыхательных путей

Увеличение сопротивления дыхательных путей

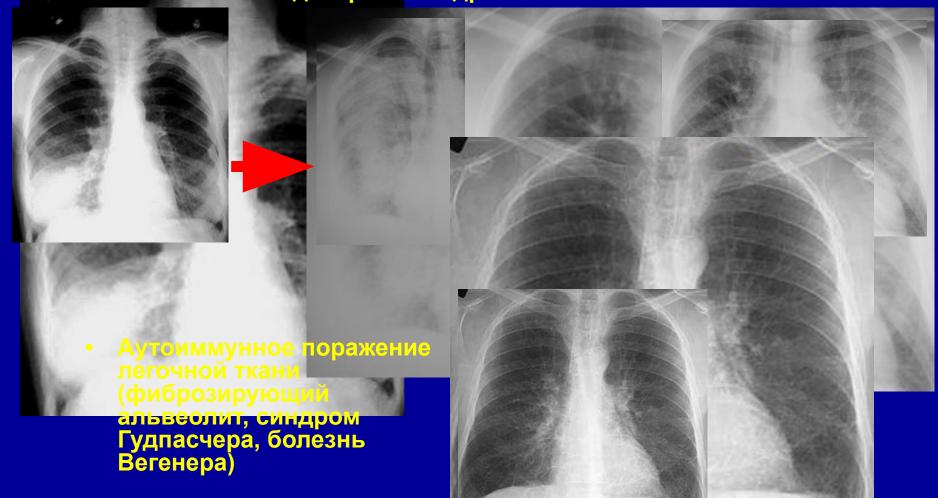
Регионарная неравномерность вентиляции легких

Шунтирование крови

Увеличение работы и кислородной цены дыхания

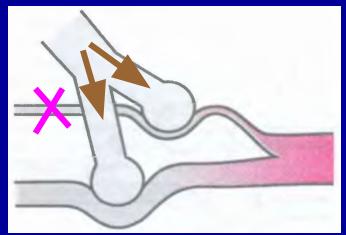
Рестриктивная ОДН

- Острое нарушение растяжимости (податливости) легочной ткани
- Ателектазирование участков легких
- Заполнение альвеол экссудатом/транссудатом
- Утолщение альвеолярно-капиллярной мембраны


Нарушение транспорта газов через альвеолярно-капиллярную мембрану

Причины рестриктивной дыхательной недостаточности

• Распространенные пневмонии


• Острый респираторный дистресс-синдром

• Кардиогенный отек легких

Перфузионная ОДН

• снижение поступления крови по ветвям легочной артерии и увеличение физиологического мертвого пространства

Уменьшается реальная площадь газообмена

Гипоксемия и гиперкапния

Смешанная дыхательная недостаточность

Паренхиматозная ДН

↓ растяжимости легочной ткани + тахипноэ

↑ работа дыхания

Утомление дыхательных мышц

Снижение альвеолярной вентиляции

Присоединение вентиляционной ДН