

КРОВОТЕЧЕНИЯ

Захохов Р.М. Зав.кафедрой общей хиругии Заслуженный врач КБР, почетный работник ВПО РФ

Кровотечением

называется излияние крови из кровеносного русла в ткани и полости организма (брюшную, грудную, черепа, в суставы и др.) или во внешнюю среду. Кровотечение возникает при любом повреждении.

Кровотечения в мягкие ткани (кровоизлияние и гематома)

Кровоизлияние — пропитывание кожи, подкожной клетчатки и мышц кровью

Гематома — ограниченное скопление крови с наличием капсулы

Этиология кровотечения

1. Сосудистая стенка

- 1.1. Нарушение целости сосудистой стенки
 - 1.1.1. Механические повреждения
 - 1.1.2. Ангиосклеротические изменения
 - 1.1.3. Повышение проницаемости сосудистой стенки (пример, авитаминоз С и др.)

Этиология кровотечения

2. Тромбоцитопатии

- 2.1. Тромбоцитопения
 - 2.1.1. Отравление медикаментами
 - 2.1.2. Облучения лучистой энергией (Чернобыль)
 - 2.1.3. Опухолевые заболевания крови (лейкозы)
 - 2.1.4. Токсико-инфекционные заболевания (уремия, сепсис, брюшной тиф и др.)
 - 2.1.5. Усиленный распад тромбоцитов при инфекции, иммунных расстройствах (болезнь Верльгофа)
- 2.2. Нарушение функций тромбоцитов при сохранении их количества в норме

Этиология кровотечения

3. Коагулопатии

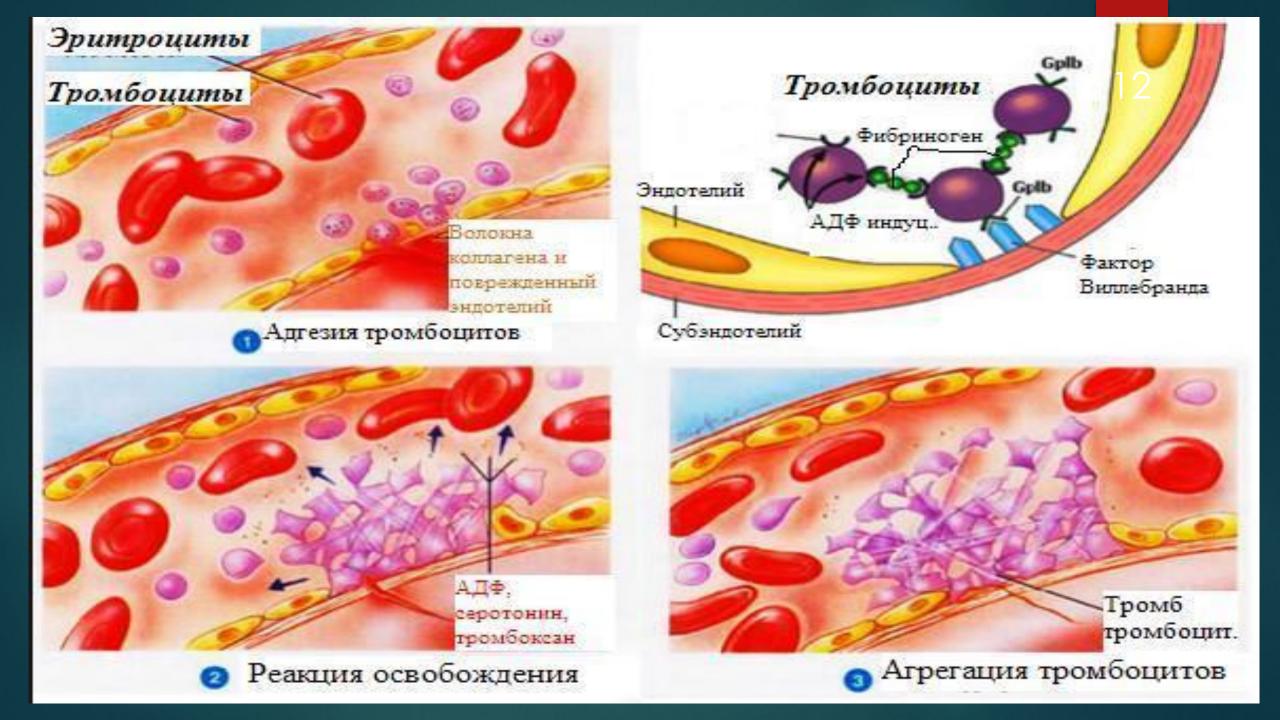
- 3.1. Генетически обусловленные дефекты факторов свертывания (гемофилия)
- 3.2. Приобретенный недостаток факторов свертывания (желтуха)
- 3.3.Применение антикоагулянтов прямого действия.
- 3.4. Острый фибринолиз

Фазы (механизмы) компенсации кровопотери

Гемостатическая фаза: на месте повреждения сосуда падает Ад, сосуд спазмируется, что поддерживается высвободившимися из поврежденных клеток адреналином, норадреналином. Тромбоциты прилипают к поврежденным клеткам и склеиваются с участием клеточного и гуморального тромбостина при активации фактора 12 и образуется тромбин с ретракцией сгустка и фибринолизом.

Репаративная фаза: снижение ОЦК приводит к перераспределению крови, выбросу крови из кровяных депо, учащению сердечной деятельности и дыхания, снижению метаболизма и т.д. и т.д.

Регенетативная фаза: усиление кроветворения, выброс молодых форм элементов крови, напряжение всех органов гемопоэза.

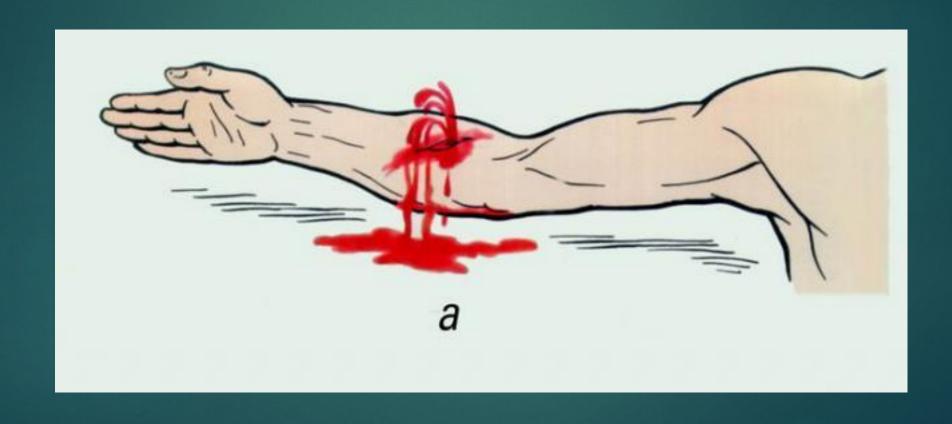

Защитно-приспособительная реакция организма в ответ на кровопотерю

- 1. Олигогемия централизация кровотока
- 2. **Гидремия** поступление жидкости из межклеточных пространств
- 3. Эритремия поступление юных форм эритроцитов из костного мозга печени и селезенки

Клеточный механизм спонтанного гемостаза — преимущественно биофизический процесс, основу которого составляют электрокинетические явления в сосудистой стенке и действие высвобождающихся биологически активных веществ.

В клеточном механизме гемостаза выделяют три фазы:

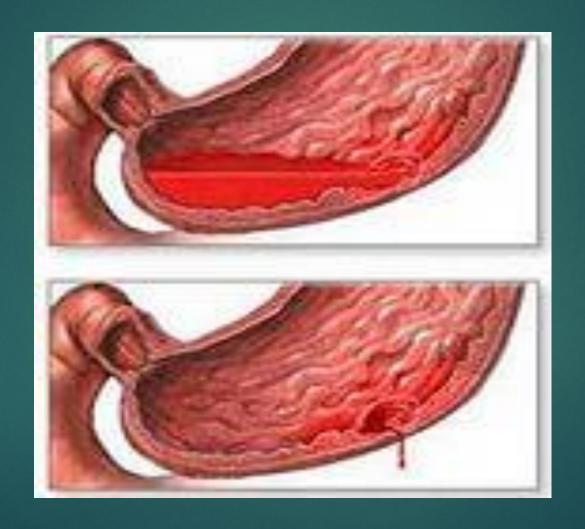
- 1. Адгезия тромбоцитов.
- 2. Агрегация тромбоцитов.
- 3. Образование тромбоцитарного сгустка.



Задачи хирурга при кровотечениях:

- 1. В кратчайшие сроки, хотя бы временно, приостановить кровотечение, т.е. прекратить потерю крови и устранить угрозу жизни пациента.
- 2. Добиться надежной остановки кровотечения с наименьшей травмой кровоточащего.
- 3.Восстановить в организме нарушения, вызванные кровопотерей.

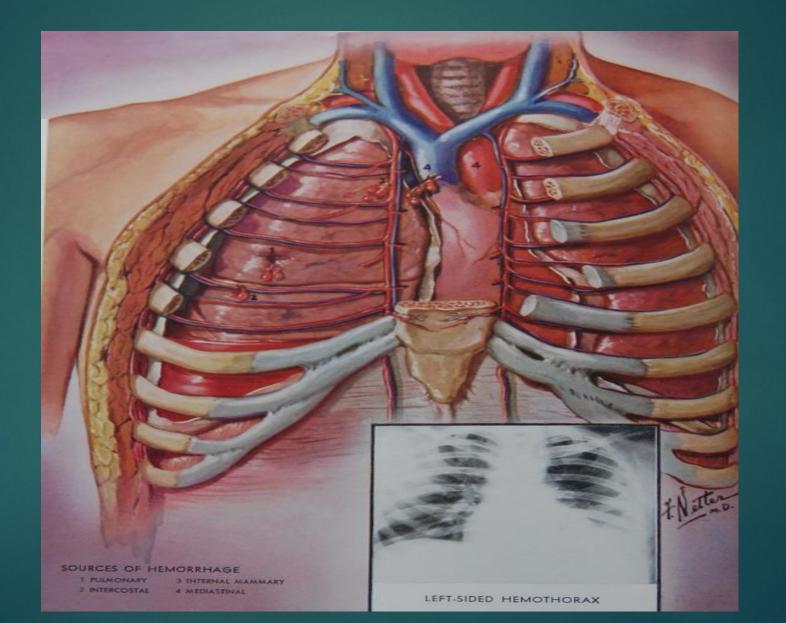
Артериальное кровотечение


Капиллярное и паренхиматозное кровотечение

 Капиллярное и паренхиматозное кровотечение характеризуется тем, что кровоточат вся раневая поверхность, мелкие сосуды и капилляры. Паренхиматозное кровотечение вследствие того, что кровоточащие сосуды фиксированы в строме и не спадаются, останавливается с трудом и часто приводит к острой анемии.

Капиллярное кровотечение

Внутреннее кровотечение


Диагностика кровотечений в просвет ЖКТ

- Лабораторное исследование показателей красной крови
- Введение зонда в желудок
- Пальцевой ректальное исследование
- Фиброгастродуоденоскопия

Клинические симптомы кровотечения в плевральную полость (гемоторакс)

- 1. Нарушение общего состояния: бледность, слабость, отдышка, головокружение, тахикардия, гипотония.
- 2. Боль в груди, отдышка, кровохарканье, притупление перкуторного звука, ослабление дыхания и голосового дрожания.

Гемоторакс

Диагностика кровотечений в плевральную полость

- Лабораторное исследование показателей красной крови
- Рентгенография грудной клетки
- УЗИ грудной клетки
- Плевральная пункция

Клинические симптомы кровотечения в околосердечную сумку (гемоперикард)

- 1. Нарушение общего состояния: бледность, слабость, отдышка, головокружение, тахикардия, гипотония.
- 2. Общее беспокойство, боль в области сердца, расширение границ сердца, глухость тонов.

Диагностика кровотечений в околосердечную сумку

- Лабораторное исследование показателей красной крови
- Рентгенография грудной клетки и сердца
- УЗИ сердца
- Пункция перикарда

Клинические симптомы кровотечения в просвет брюшной полости (гемотеритонеум)

- 1. Нарушение общего состояния: бледность, слабость, отдышка, головокружение, тахикардия, гипотония.
- 2. Симптомы перитонита: боли в животе, вздутие, напряжение мышц брюшной стенки, отсутствие перистальтики, симптомы раздражения брюшины.

Диагностика кровотечений в брюшную полость

- Лабораторное исследование показателей красной крови
- УЗИ брюшной полости
- Лапароцентез или лапароскопия

Клинические симптомы кровотечения в область черепа (гемокраниум)

- 1. Нарушение общего состояния: бледность, слабость, отдышка, головокружение, тахикардия, гипотония.
- 2. Головная боль, спутанность и потеря сознания, параличи конечностей, нарушение функции черепно-мозговых нервов, исчезновение речи.

Диагностика кровотечений в полость черепа

- Лабораторное исследование показателей красной крови
- Рентгенография черепа
- Эхография черепа
- Компьютерная томография
- Люмбальная пункция

Клинические симптомы кровотечения в полость сустава (гемартроз)

Боль в области сустава, сглаженность контуров, нарушение функции движения в суставе, флюктуация

Диагностика кровотечений в полость сустава

- Лабораторное исследование показателей красной крови
- Рентгенография сустава
- ► УЗИ сустава
- Пункция сустава

Состояния гемостаза

- Устойчивый − источник кровотечения прикрыт фибрином
- ► **Неустойчивый** источник кровотечения прикрыт сгустком крови
- Продолжающееся кровотечение

Оценка тяжести кровотечений

- Легкая степень (кровопотеря до 750 мл)
- Средняя степень (кровопотеря 800-1000 мл)
- Тяжелая степень (кровопотеря 1500-2000 мл)
- Очень тяжелая (кровопотеря больше 2000 мл)

Легкая степень

- Состояние удовлетворительное
- Пульс 80-100 уд.
- ► АД 100-120 мм рт. ст.
- → Эритроциты 3-3,5 млн.
- ► Гемоглобин свыше 100 г/л
- Гематокрит 35-40%
- Дефицит ОЦК 10%

Средняя степень

- Состояние средней тяжести
- Пульс 100-120 уд.
- ► АД 80-100 мм рт. ст.
- ► Эритроциты -2,5-3 млн.
- ► Гемоглобин 80-100 г/л
- ► Гематокрит 30-35%
- Дефицит ОЦК 20%

Тяжелая степень

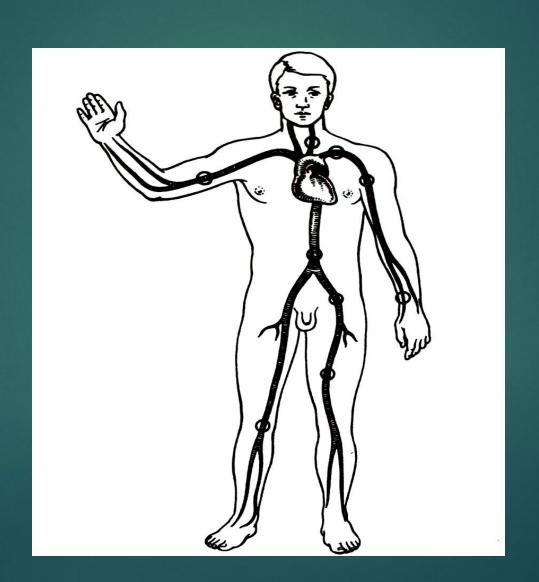
- ▶ Состояние тяжелое
- Пульс 120-140 уд.
- ► АД 60-70 мм рт. ст.
- ► Эритроциты 2-2,5 млн.
- ► Гемоглобин 50-75 г/л
- Гематокрит 25-30%
- Дефицит ОЦК 30%

Очень тяжелая степень

- Состояние крайне тяжелое
- ▶ Пульс не определяется
- ► АД не определяется
- ▶ Эритроциты менее 2 млн.
- ► Гемоглобин менее 50 г/л
- Гематокрит ниже 25%
- Дефицит ОЦК свыше 30%

Возможные осложнения кровотечений:

1). Острое малокровие:


- -Внезапное падение ОЦК.
- -Ухудшение функции сердца.
- -Прогрессирующее падение АД.
- 2). Геморрагический шок:
- -Нарушение микроциркуляции.
- -Снижение скорости кровотока в капиллярах.
- -Агрегация эритроцитов.
- -Появление микросгустков.
- 3). Сдавление органов и тканей:
- -Тампонада сердца.
- -Сдавление головного мозга.
- -Образование больших гематом, сдавливающих магистральные сосуды.
- -Гангрена.
- -Образование аневризм.
- <u>4). Воздушная эмболия</u> □ гипокоагуляция крови □ вторичные диапедезные кровотечения.

Методы остановки кровотечения

Временные

- Остановка кровотечения путем пальцевого прижатия сосудов
- Наложение жгута
- Давящая повязка
- Тампонада
- Максимальное сгибание конечности в суставе
- Временное шунтирование сосуда
- Возвышенное положение конечности
- Наложение зажима на сосуд

Места прижатия артерий для временной остановки кровотечения

Правила наложения кровеостанавливающего жгута:

- 1. Жгут накладывают только при массивном артериальном кровотечении, когда видно, что другие методы окажутся бесполезными.
- 2. Жгут накладывают на приподнятую конечность.
- 3. Жгут на голое тело не накладывают, конечность предварительно обворачивают мягкой материей.
- 4. В хорошо растянутом положении накладывают только первый тур жгута, последующие лишь фиксируют первый тур.
- 5. К жгуту фиксируют записку с указанием даты, времени в часах и минутах и фамилией больного.

Правила наложения кровеостанавливающего жгута:

- 6. Ниже жгута конечность обкладывают пузырями со льдом (создают местную гипотермию).
- 7. В жаркое время года под прикрытием пальцевого прижатия основного сосуда, жгут расслабляют на 5 минут через каждый час, в холодное время года через 1,5 часа.
- 8. Перед снятием длительно пребывавшего на конечности жгута следует наладить инфузионную противошоковую терапию и произвести круговую футлярную новокаиновую блокаду конечности проксимальнее еще лежащего жгута.

Методы остановки кровотечения

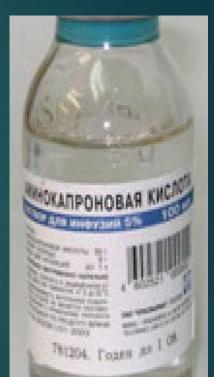
Постоянные

- Механические
- Физические
- Химические
- Биологические
- Комбинированные

Методы окончательной остановки кровотечения (гемостаза)

Механические

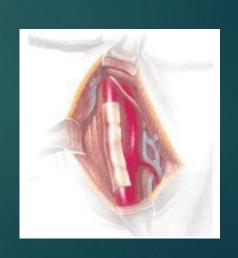
- 1.1. Перевязка сосуда в ране
- 1.2. Перевязка сосуда на протяжении (по показаниям)
- 1.3. Временное шунтирование сосуда
- 1.4. Клипирование сосуда
- 1.5. Обшивание сосуда,
- 1.6. Закручивание сосуда
- 1.7. Плотная тампонада раны
- 1.9. Сосудистый шов (ручной или аппаратный)
- 1.10. Пластика сосуда
- 1.11. Протезирование сосуда


Методы окончательной остановки кровотечения (гемостаза)

Химические методы гемостаза делятся на местные и общего резорбтивного действия:

- 2.1. Местные
- 2.1.1. Эпсилон аминокапроновая кислота при желудочном кровотечении
 - 2.1.2. Перекись водорода 3%
 - 2.1.3. Калия перманганат
 - 2.1.4. Нитрат серебра (азотнокислое серебро) 5-10%
- 2.1.5. Препараты желатина геласпон губка из вспененного желатина
- 2.1.6. Воском залепляют плоские поврежденные кости черепа
- 2.1.7. Салфетки из карбазохрома прикладывают к раневой поверхности паренхиматозных

Химические (медикаментозные) методы остановки кровотечений.


- Раствор андроксона 0,025% по 1мл внутримышечно или подкожно до 4 мл в день применяется при паренхиматозных, капиллярных, желудочно-кишечных кровотечениях, является продуктом окисления адреналина.
- 5% раствор аминокапроновой кислоты внутривенно капельно или в порошке по 3,0 г в разовой дозе применяется при фибринолитических кровотечениях.
- Кроме того, используются: изоверин 2% раствор внутримышечно, проталина сульфат 1% раствор внутривенно, дицинон 12,5% внутривенно и внутримышечно.

Химические методы гемостаза препараты регенерированной целлюлозы(серджисел)

- ✓ Низкий рН материала (2,5-3,0) вызывающий денатурацию белков крови, что приводит к быстрому формированию тромба.
- Широкий спектр антимикробной активности
- ✓ По∧ностью рассасывается в течении 1-2 недель
- ✓ Обладает хорошими адгезивными свойствами

Биологические методы

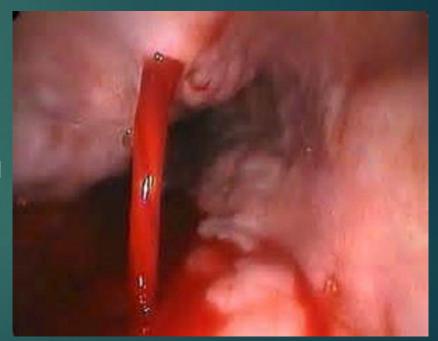
Методы местного действия

1.Использование собственных тканей организма

Наиболее часто используют жировую и мышечную ткань, богатую тромбопластином. Свободный кусочек этих тканей или прядь на сосудистой ножке фиксируют к нужной зоне. При этом возникает определённый тампонирующий эффект.

2.Использование средств биологического происхождения

Применяют гомо- и гетерогенные компоненты плазмы крови (прежде всего факторы свёртывающей системы), иногда с добавлением коллагена, который обладает собственной гемостатической активностью.


3. Основные препараты местного действия

Для местного применения: гемостатическая губка, фибриновая пленка, "Аллоплант", "Биоплант Биологические методы общего применения.

- 1. Ингибиторы фибринолиза (апротинин).
- 2. Фибриноген.
- 3. Переливание препаратов крови
- 4. Переливание плазмы крови.
- 5. Переливание тромбоцитарной массы
- 6. Антигемофильная плазма, антигемофильный криопреципитат

Принципы действия биологических способов остановки кровотечений

- усиление (ускорении) свертывания крови;
- торможение лизиса
 образовавшихся сгустков;
- формирование спазма сосудов, приводящему к уменьшению темпа кровопотери, замедлению кровотока и ускорению фиксации сгустков в просвете раны сосуда.

Методы остановки кровотечения

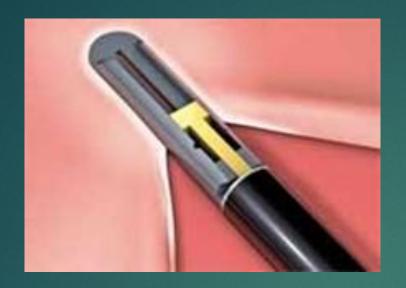
Физические

- Диатермокоагуляция
- Криокоагуляция
- Лазерокоагуляция

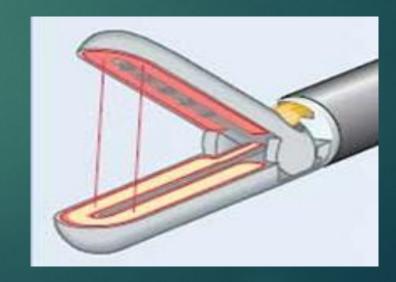
Режимы коагулятора:

- ◆ Резание- используется переменный ток низкого напряжения в непрерывном режиме
- ❖ Коагуляция- используется переменный ток высокого напряжения в импульсном режиме

Методы коагуляции:


- Бесконтактный(фульгурация)
- Контактный (десиккация)

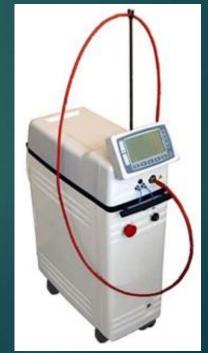
Термовоздействие. Криовоздействие.


Криовоздействие-использование с целью гемостаза местного охлаждения тканей с помощью холодовых агентов (хлорэтил, эфир, фреон)

Термовоздействие-механизм гемостатического эффекта высокой температуры- коагуляция белка сосудистой стенки, ускоренное свертывание крови. (в настоящее время может выполнятся термокоагуляция сосудов диаметром до 7 мм при пиковом давлении до 950 мм рт. ст.)

Равномерная коагуляция сосудов по всей поверхности захвата при минимальном латеральном повреждении тканей

 Терморегулирование протекание тока между поверхностями захвата: равномерная термокоагуляция, в т. ч. тканей неоднородной структуры.


Лазерная фотокоагуляция

это бесконтактный способ коагуляции тканей путем воздействия оптического рентген излучений, характеризующегося высокой направленностью и большой плотностью энергии

Наиболее эфективен при капиллярно-диффузных и паренхиматозных кровотечения

Ультразвуковая коагуляция

Принцип действия- трансформация электрической энергии, поступающей из генератора, в механическую, благодаря пьезокерамическим элементам в рукоятке элемента.

Высокочастотные механические колебания передаются на лезвие насадки с частотой 55500 колебаний в секунду.

3 типа воздействия на ткани:

Диссекция

Коагуляция

Кавитация

Коагулирующий эффект основан на местном воздействии энергии в течение продолжительного периода, что приводит к денатурации протеинов. При этом максимальная температура может доходить до 100С.

Ультразвуковая коагуляция

Преимущества:

- Уменьшение распространение тепла
- Многообразие применения
- Минимальное дымообразование
- Исключение прохождения тока через пациента.

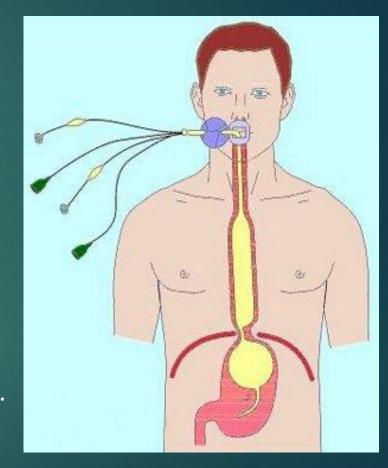
Недостатки:

- Высокая стоимость аппарта и расходных материалов
- Ограничение сосудами 2-3 мм или меньше низкая прочность на более крупных сосудах
- Технические ограничения
- Относительная медленность работы

Аргоноплазменная коагуляция (АПК)

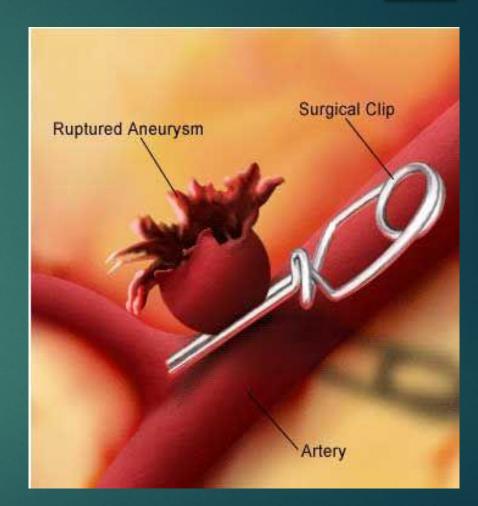
Метод монополярной высокочастотной хирургии, в котором энергия тока высокой частоты передается на ткань бесконтактным способом с помощью электропроводящего газа- аргона (аргоновая плазма)

Свойства:


- Монополярный принцип
- Бесконтактность
- Расстояние от ткани 2-10 мм
- Максимальная глубина коагуляции 3 мм
- Коагуляция тканей за счет их нагрева
- «Сродство» аргоновой плазмы к крови
- Равномерная, автоматические ограничения коагуляции по глубине и по плоскости

Специальные методы

К механическим методам остановки кровотечения относят отдельные виды операций: спленэктомия при паренхиматозном кровотечении из селезёнки, резекция желудка при кровотечении из язвы или опухоли, лобэктомия при лёгочном кровотечении и т.д.


Применение зонда-обтуратора при кровотечении из варикозно расширенных вен пищевода Используют зонд Блэкмора, снабжённый двумя манжетами, нижнюю фиксируют в кардиальном отделе желудка, а верхняя при раздувании сдавливает кровоточащие вены пищевода.

Специальные методы

Клипирование сосудов

- Зажатие мелких, главным образом мозговых, артерий защипками клипсами
- Клипсы бывают рассасывающиеся из синтетического материала и нерассасывющиеся (металлические).
 Нерассасывающиеся клипсы изготавливают из титана,
- Наложение клипс производится специальным аппаратом клипсонакладывателем (клипсопликатором, клипатором) одно- или многозарядным.

Пленкообразующие полимеры

- Аэрозоли на основе полиметакрилатов (гастроль, статизол, лифузоль)
- ✓ Медицинские клеи на основе цианакрилатов (МК-6,1,8, сульфакрилат)

Применяют для:

- Остановки кровотечения
- Герметизации швов
- Соединения тканей

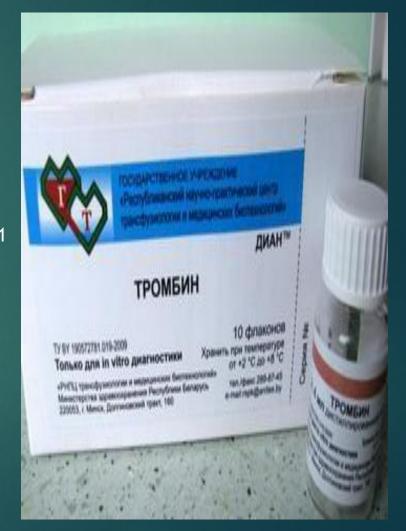
Методы определения кровопотери

Шоковый индекс Альговера-PS/AD=0,5-0,6

$$\Delta$$
ЦК(ж)=60 x Ht+1000 x V- 6050

$$\Delta$$
ЦК(м)=60 x Ht +1000 x V- 6600

Заместительная терапия при кровопотере


Степень кровопотери	Объем кровопотери , мл	Общий объём трансфузии(% величины кровопотери)	Донорская кровь(% величины кровопотери)	Соотношение солевых и коллоиднных растворов
Легкая (до 10%ОЦК)	до 500	300	_	Только солевые
Средняя (10-20%ОЦК)	500-1000	200	_	2:1
Тяжё∧ая (21-30%ОЦК)	1000-1500	180	50	1.5:1
Массивная (>30%ОЦК)	более 1500	170	70	1:1

Классификация местных гемостатиков

Νº	г Группа препаратов	Наименование препаратов
1.	Вазоконстрикторы	Адреналин, питуитрин, вазопрессин
2.	Препараты, влияющие на тромбоцитарное звено гемостаза (индукторы адгезии и агрегации тромбоцитов)	Колластат, Колластипт, Колетекс-гем, Пентафарм, Коллапол, Гельфоам, Колгитекс, Хамальган, Спонгиопост, Спонжель, Геласпон, Гемотекс. Желпластан
3.	Препараты, влияющие на плазменное звено гемостаза (на основе естественных факторов свертывающей системы)	Тромбостат, Гипстазин, Топинал, Тромбинар, Тиссукол, фибриновый клей
4.	Ингибиторы фибринолиза	Поликапран, Активтекс АКФ
5.	Комбинированные препараты	Тахокомб, Тромбокол

Тромбин

- Тромбин используется только местно (!) в порошкообразной форме или в растворе либо входит в состав других гемостатических средств (гемоста тические губки, гемостатическая вата и пр.).
- В комплексе с другими биологическими и химическими средствами применяют при желудочном кровотечении (введение через зонд охлажденной смеси эпсилонаминокапроновой кислоты, тромбина и фибриногена).

Фибриноген

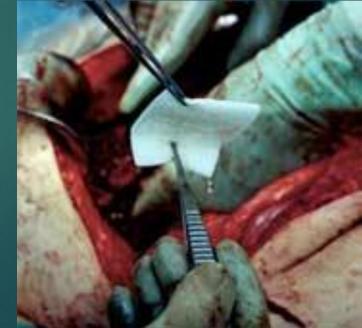
- Фибриноген в чистом виде в качестве местного гемостатического средства не применяется. Вместе с тромбином входит в состав местных гемостатических средств, фибриновых клеев.
- Последние обычно состоят из тромбина, фибриногена, солей кальция, XIII фактора свертывающей системы и готовятся из отдельных составляющих ех tempore. Клеи находят широкое применение, начиная от заклеивания ссадин и заканчивая остановкой кровотечений из печени, селезенки, легких.
- Выпускаются под различными наименованиями («Тиссель». «Берипласт», «Тиссукол», «Фибринклебер»).

Препараты коллагена

- Особое место среди природных полимеров, обладающих кровоостанавливающими свойствами, занимает коллаген один из основных структурных белков организма.
- ► Гемостатическая активность коллагеновой губки объясняется ее высокой пористостью, способствующей поглощению крови с одновременной агрегацией тромбоцитов и последующим процессом ее свертывания.

Гемостатическая губка

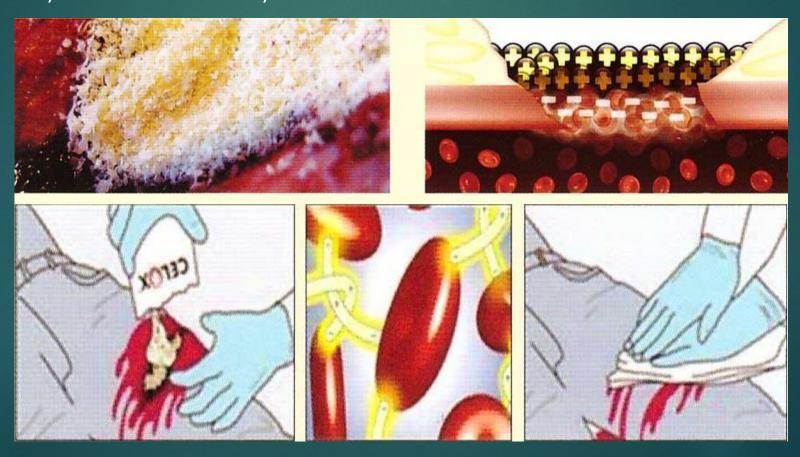
- Гемостатическая губка представляет из себя лиофилизированную плазму. Различные ее виды также содержат дополнительно тромбин, ионы кальция, иногда - ингибиторы фибринолиза (гемостатическая губка с аминокапроновой кислотой), антисептики (биологический антисептический тампон), могут иметь тканевую основу (гемостатическая марля).
- Применяются для остановки, паренхиматозных и капиллярных кровотечений, обладают достаточно высокой гемостатической активностью.


TaxoKom6 (TachoComb)

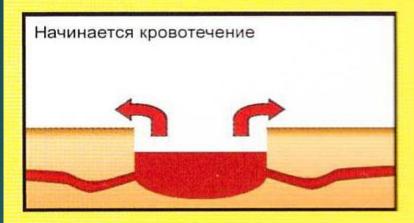
- Основные физико-химические свойства: пластина белого цвета с жёлтым покрытием для маркировка покрытой стороны;
- Состав. 1 кв.см пластины толщиной 0,5 см включает
 - ► 1.3 2 мг коллагена (с сухожилия коня),
 - 4,3 6,7 мг лиофилизованого фибриногена человека,
 - 1,5 2,5 МЕ тромбина из крови быка,
 - 0,055 0,087 МЕ Евр.Ф. апротинина (из лёгких быка),
 - 7 26 мкг рибофлавина Е 101.

Показания для использования ТахоКомб

- для достижения гемостаза и склеивания тканей, особенно при хирургических вмешательствах на паренхиматозных органах;
- в случаях, когда кровотечения не могут контролироваться традиционными методами или когда ожидать результаты этих методов недостаточные;
- с лечебной и профилактической целью при желчных, лимфатических и жидких фистулах;
- для остановки кровотечения при хирургических вмешательствах в области ЛОР-органов, в гинекологии, урологии, сосудистой хирургии, травматологии.

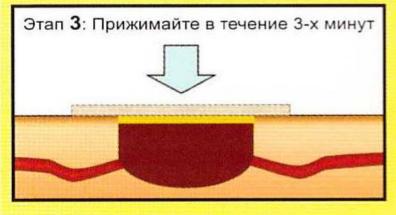


Основные виды Celox


1) Celox Granules (Celox Pouches) — Гранулы Селокс

Кровоостанавливающий эффект достигается путем связывания положительно-заряженных гранул Селокс с отрицательно заряженными эритроцитами. По сути, Celox работает путем одновременного воздействия на эритроциты (красные клетки крови) и на жидкости в крови, путем смешивания и «склеивания» их между собой, чтобы в итоге получить псевдо «сгусток».




Как использовать

СЕЛОКС В ГРАНУЛАХ

2) Celox-A (Celox «Accelerated» deployment system, Celox Applicator) — Аппликатор Селокс

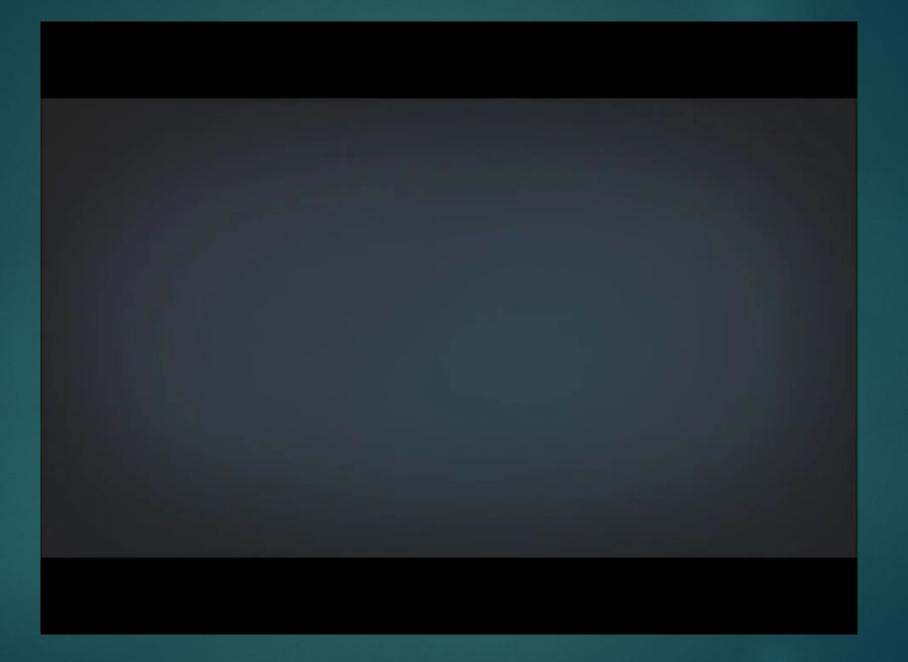
Новый вид продукции Quikclot — пропитанные перевязочные средства.

3-Е ПОКОЛЕНИЕ QUIKCLOT пропитанные каолином бинты

Природный инертный минерал Каолин давно известен своими свойствами по свертыванию крови. Каолин не содержит растительных протеинов или протеинов животных \людей, а также хитозана (chitozan) или тромбинов (trombine), а значит не может вызвать аллергической реакции.

Quikclot 3-го поколения.

Quikclot Combat Gauze


Полисахарид АМР имеет молекулярную структуру, которая позволяет ему быстро поглощать жидкую составляющую крови. Процесс дегидратации приводит к повышению концентрации тромбоцитов, эритроцитов и белков, что запускает естественный процесс каскадного тромбообразования. При контакте с кровью, частицы полисахарида АМР приводит к образованию гелеобразного клейкого матрикса, который обеспечивает механический барьер, предотвращающий дальнейшее кровотечение.

Пена останавливающая внутреннее кровотечение

Разработку, успешно прошедшую ДОКЛИНИЧЕСКИЕ ИСПЫТАНИЯ, профинансировало американское Агентство инновационных исследовательских проектов в области обороны. Пену образуют два жидких полимера, которые в результате взаимодействия расширяются и застывают - это происходит после введения полимеров в брюшную полость. Она оказывает компрессионное действие на рану и останавливает кровотечение на один - три часа. После того, как пациент будет доставлен в больницу, пена легко удаляется хирургическим путем.

Критерии правильности наложение артериального жгута являются:

- СИНЮШНОСТЬ КОЖНЫХ ПОКРОВОВ
- повышение температуры тела ниже наложение жгута
- исчезновение пульсации периферических артерии
- кровотечения из раны
- прекращения кровотечения

Временная остановка кровотечения из сонной артерии осуществляется:

- Наклоном головы
- приданием возвышенного положения
- прижатием артерии к остистому отростку 8 шейного позвонка,
- прижатием артерии к поперечному отростку 6 шейного позвонка
- прижатием артерии к наружному концу 1 ребра

Паренхиматозное кровотечение наблюдается при повреждении:

- печени
- почек
- Селезенки
- желудка
- Матки

Оптимальный способ остановки кровотечения из варикозных вен нижней конечности

- наложение жгута
- наложение давящей повязки и возвышенное положение нижней конечности
- применение химических веществ
- СОСУДИСТЫЙ ШОВ
- электрокоагуляция

Больной, 30лет, страдающий в течении 7лет язвенной болезнью желудка, на протяжении суток отмечал нарастающую слабость, головокружение. Сегодня утром, встав с постели, он на несколько секунд потерял сознание. После этого однократно была рвота в виде «кофейной гущи» и «дегтеобразный» стул. Кожные покровы бледные. Живот мягкий, безболезненный.

Вы-участковый врач. Какой Ваш предположительный диагноз. Какие срочные дополнительные исследования необходимо выполнить для подтверждения Вашего предположения. Куда и каким способом Вы отправите больного на лечение?

В хирургическое отделение доставлен больной с колоторезаной раной в подколенной ямке. При ревизии раны установлено - повреждение подколенной артерии, но Вы не владеете техникой сосудистого шва.

Какие действия Вы предпримите?