
ПРИГОТОВЛЕНИЕ РАСТВОРОВ ДЛЯ ИНЪЕКЦИЙ

ПРИГОТОВЛЕНИЕ РАСТВОРОВ ДЛЯ ИНЪЕКЦИЙ. Общая схема

Особенности растворения ЛВ

■В герметич реакторах с неметаллич Стенками (из фарфора, стекла, эмалиров. и т.д.)

При растворении:

- □ эуфиллина, СаС и др. солей кальция важно удалить СО₂;
- □ легкоокисляющихся ЛВ из р-ля удаляют О₂;
- Растворитель кипятят **15** мин, охлаждают и насыщают стерильным инертным газом путем барботирования.
- □ Для соединений, подверженных декарбоксилиро-ванию, применяют СО₂ Однако при этом снижается рН, что нежелат-но при ампулировании р-ров ЛВ, гидролизующихся в кислой среде (натрия тиосульфата, кофеина бензоата натрия, эуфиллина, натрия бензоата и т.д.).
- •Масляные р-ры ЛВ готовят при нагревании.

ФИЛЬТРАЦИЯ ПАРЭНТЕРАЛЬНЫХ РАСТВОРОВ

Дополнительные требования к фильтрам для парэнтеральных растворов

- □ Должны обладать высокой механической прочностью (чтобы препятствовать выделению в фильтрат волокон и механических включений; противодействовать гидравлическим ударам)
- □ Должны выдерживать тепловую стерилизацию;
- □ Должны задерживать очень мелкие частицы и микроорганизмы;

Виды фильтрации в зависимости отфазмера удаляемых

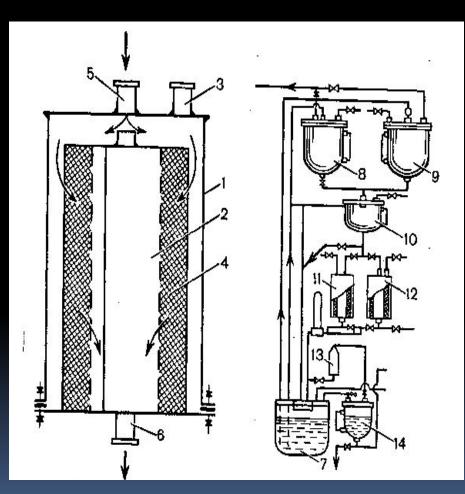
Тонкая фильтрация (часто как предфильтрация)

Микрофильтрация

Ультрафильт-рация

Гиперфильтрация (обратный осмос)

1—2 **М**усм₅: **‡**µитэвн процерез **RNH** осущфетвле RПД йи**Щэ**павд Перенал MKM. HP Г,0 Њ<u>М</u> кп Г0<u>6</u>,0 од раст**вар**ите молекул basweba **DOTATION** assq 01 которых ~ в размеры


, интови

KOIIIIÇMHTHPIX

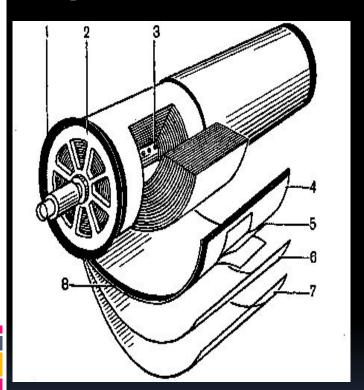
ПИРОРЕННЫХ

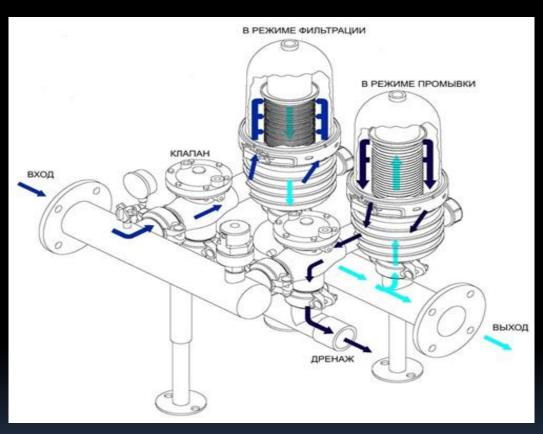
Глубинные фильтры

Фильтрующий материал закреплен на внутреннем перфорированном цилиндре

Для грубой предварит фильтрации и тонкой фильтрации растворов предварит пре

Проблемы использования:

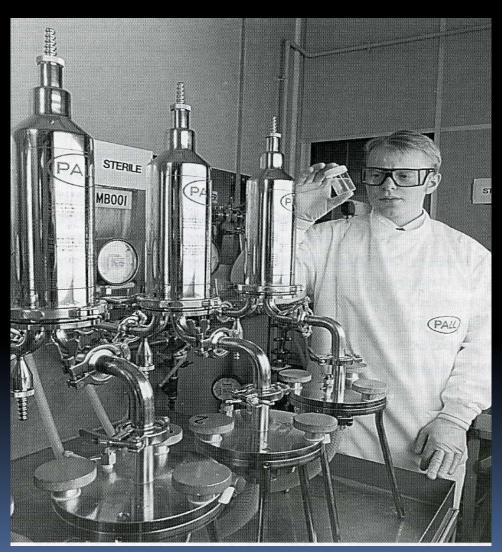

- **большая** поверхность адсорбции → потери ЛВ на фильтре,
- задержние в порахм/о→размножение.
- Эксплуатация не более 8 ч.


Фильтр ХНИХФИ

Мембранные фильтры

Фильтродержатели дисковые

Фильтродержатели патронного типа



Ацетат целлюлозы. Диаметр пор от 0,002 до 1 мкм. Фторопластовые устойчивы в растворах кислот, щелочей, и др. агрессивных средах.

Для тонкой и стерилизующей фильтрации растворов

Мембранная стерилизующая фильтрация Дисковые фильтродержатели

Мембранный фильтр, задерживающий вирусы

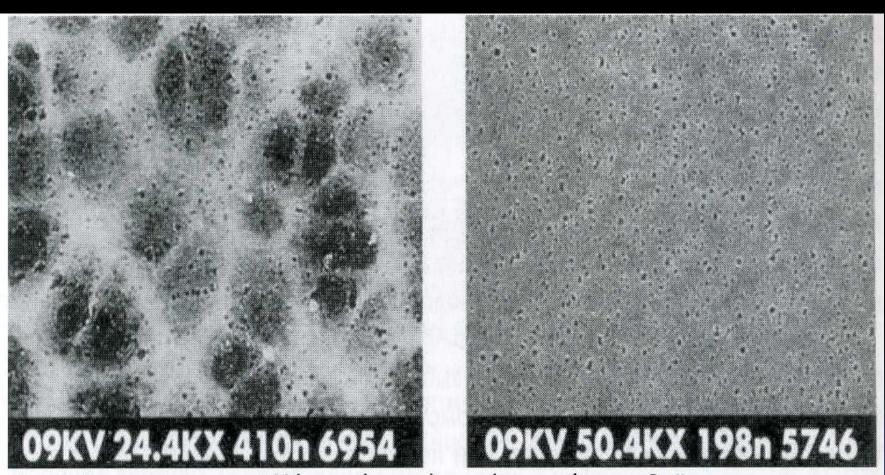


Рис. 1. Вид поверхностей УФ мембраны (слева) и мембраны «Вайросолв»

Контроль целостности мембраны и герметичности сборки фильтровальной установки

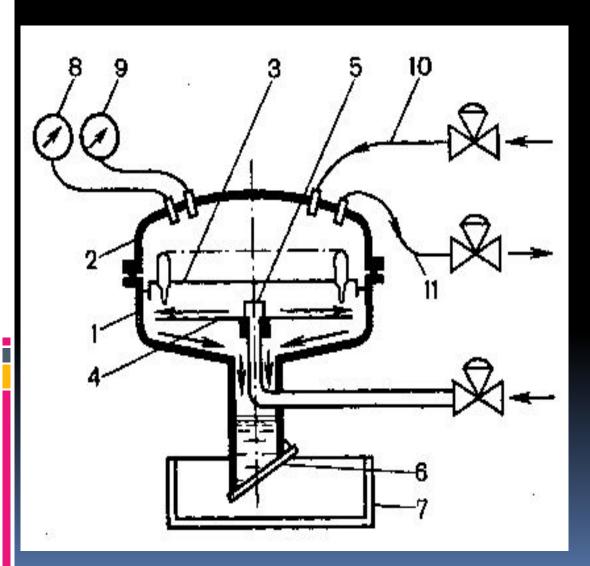
- *Тест «первого пузырька»* Проверяют минимальное давление, необх. для возникновения *первого пузырька* с обратной стороны фильтрующей мембраны. Требуемое для этого давление указывается в паспорте мембран. Выполняют после сборки фильтровальной установки до фильтрации и после фильтрации.
- Для контроля целостности стерилизующих мембран используют тест «Фильтрование суспензии бактерий Pseudomonas diminuta» (вид бактерий с наименьшим размером, около 0,27 мкм).

АМПУЛИРОВАНИЕ

после проведения контроля качества фильтрата

ОПЕРАЦИИ АМПУЛИРОВАНИЯ:

- наполнение ампул раствором,
- запайка и проверка ее качества,
- стерилизация,
- бракераж,
- маркировка и упаковка


АМПУЛИРОВАНИЕ

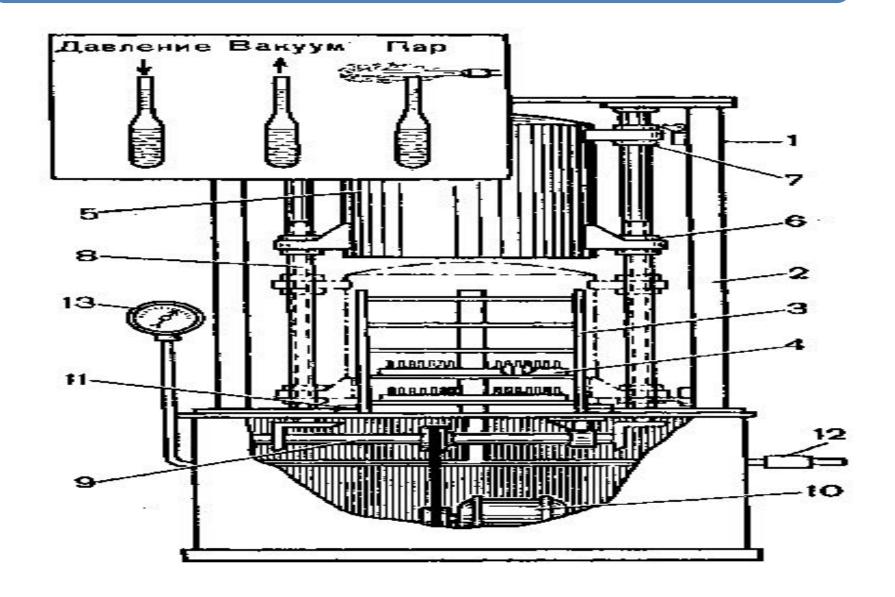
- после проведения контроля качества фильтрата
- в помещениях класса А

ОПЕРАЦИИ АМПУЛИРОВАНИЯ:

- наполнение ампул раствором,
- запайка и проверка ее качества,
- стерилизация,
- бракераж,
- маркировка и упаковка

Вакуумный способ ампулирования

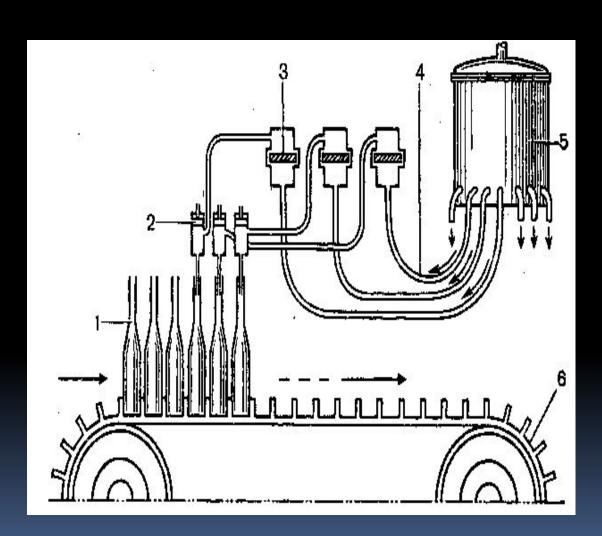
Модель АП-4М2


Для осуществления дозирования раствора ЛВ используется контактный вакуум-манометр (9).

Обеспечивает создание расчетного разрежения,

соответствующего требуемому объему наполнения

Метод высокопроизводителен (до 50 000 амп/час), но неточен: ±15%


Удаление раствора ЛВ из капилляров

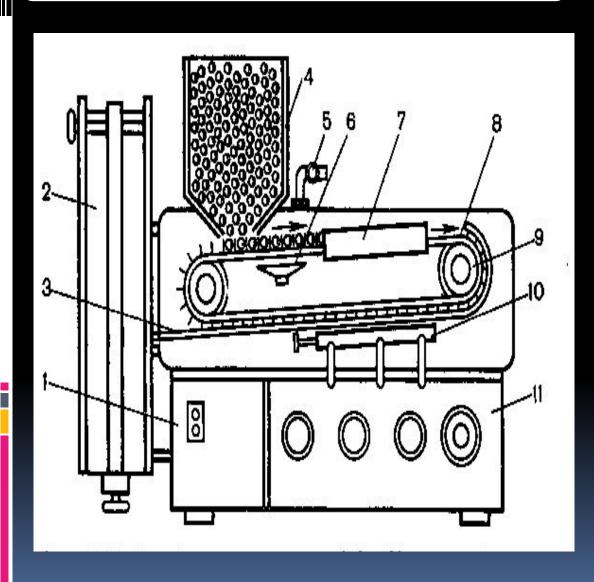
Шприцевой способ заполнения ампул

Используется для наполнения крупноемких (более **5** мл) ампул . Концы игл опускают ниже плечиков ампулы, иначе раствор не будет поступать в ампулы, будет обгорать при запайке.

Точность дозирования высокая — ±2 %; Малопроизводителен (до 10 тыс. амп/час)

Проверка точности объема наполнения.

Требование ГФ: фактический объем парэнтеральных растворов в контейнерах (ампулах, флаконах) д.б. больше номинального


Объем инъекционных растворов в сосудах

Номинальный объем, мл	Объем заполнения, мл		Количество сосудов для контроля
	невязкие растворы	вязкие растворы	заполнения, шт.
1,0	1,10	1,15	20
2,0	2,15	2,25	20
5,0	5,30	5,50	20
10,0	10,50	10,70	10
20,0	20,60	20,90	10
50,0	51,0	51,50	5
Более 50	На 2 % более	На 3 % более	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	номинального	номинального	Military is a state of the stat

Проверка точности объема наполнения ампул

- При **20±2°**С.
- В ампулах до **50** мл объем замеряется калибровочным шприцем
- 50 мл и более калибровочными цилиндрами.
- Объем раствора после вытеснения воздуха и наполнения иглы и объем в мерном цилиндре **не** должны быть меньше номинального.

Запайка ампул

- □ С пом газовых горелок
- □ При необх в инертной среде.
- □ Ампулы с огне- и взрывоопасными ЛВ нагревают с помы электросопро-тивления.
 - ■Капилляр вводят в электрич. нагреватель, стекло размягчается, капилляр оттягивается и оплавляется.
- □ Если термич запаивание невозм запаивание невозм поливинилбутирола

Контроль качества запайки

- Вакуумный метод Ампулы в кассетах помещают в камеру капиллярами вниз. Из камеры откачивают воздух. Из плохо запаянных ампул раствор выливается полностью или частично. Такие ампулы бракуют.
- Метод избыточного давления Ампулы в кассетах помещают в емкость с подкрашенным растворителем (метиленовым синим, суданом 3 и др.) И на 20—25 мин создают избыточное давление 100±20 кПа, затем его снимают. Контейнеры с попавшим внутрь подкрашенным раствором бракуют.

Автоматическая линия 3060-00-00 ПС.

Операции:

- -наружная и внутренняя мойка,
- сушка и стерилизация ампул,
- охлаждение ампул,
- **-** заполнение раствором,
- продавливание из капилляров,
- заполнение ампул инертным газом,
- промывка капилляров
- запайка.

СТЕРИЛИЗАЦИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ

Процесс умерщвления в объекте или удаления из него микроорганизмов всех видов, находящихся на всех стадиях развития (ГФ XI, т.2, с.19)

При выборе методов и режимов стерилизации ЛВ необходимо решить **2** задачи**:**

(.д.т и ипреидед **киатой** эдеоа і адотэм эмтээж **НЕЛЬЗЯ ИСПОЛЬЗОВАТЬ** деструкцию ЛВ: • исключить оррбкта из стерилизуемого уничтожить все м/о или атильдү • При использовании щадящих методов стерилизации инактивация м/о подчиняется экспоненциальному закону,

существует СТАТИСТИЧЕСКАЯ ВЕРОЯТНОСТЬ ВЫЖИВАНИЯ М/О. ОПРЕДЕЛЯЕТСЯ:

- 1. Количеством м/о, присутствующих в объекте
- **2.** Типом м/о и их сопротивляемостью стерилизующему воздействию
- 3. Средой, в которой находятся м/о

На практике невозможно доказать, что стерильность достигнута для каждой из множества единиц упаковок серии, подвергнутой стерилизации. Стерильность д.б. гарантирована методом стерилизации

ГФ РБ: УРОВЕНЬ ГАРАНТИИ СТЕРИЛЬНОСТИ (Sterility Assuarance Level - SAL), характеризующий метод стерилизации

■ SAL – степень гарантии, что процесс стерилизации в каждом конкретном случае обеспечивает стерильность группы продукции. Выражается как вероятность наличия нестерильного продукта в этой группе.

Для серии ЛС SAL = 10-6.

Это означает вероятность выживания не более 1 м/о в 10⁶ простерилизованных упаковок

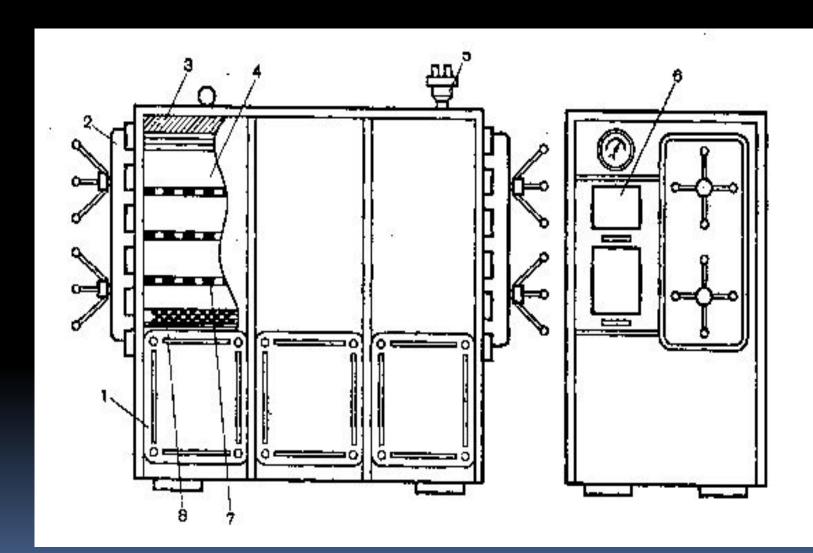
ГФ РБ: методы стерилизации

- тепловой;
- микрофильтрация;
- радиационный;
- химический

GMP: тепловые методы стерилизации являются предпочтительными (методами выбора) для растворов ЛВ.

Тепловая стерилизация растворов

Насыщенный пар под давлением. Основной метод для водных растворов ЛВ. Автоклавы. Стерил.агент – пар под давлением. Денатурирет белки м/о.


•120±2°С, (0,11мПа).

•132±2°С (0,2 мПа).

<u>Текучий пар</u>. Пар при атмосферном давлении, **100**°C. Для растворов термолабильных веществ, не выдерживающих основной режим. Допускается в исключительных случаях, при регламентации ФС. Тиндализация (по Коху).

Сухожаровая стерилизация Горячий воздух Воздушные стерилизаторы 160° или 220°С. Для масляных растворов и порошкообразных термостойких ЛВ, с целью депирогенизации Стерил. Агент горячий воздух. Механизм разрушения м/о – пиролиз (интенсификация окислительных процессов в клетке)

Автоклавы = паростерилизаторы. Тип АП-7, АП-18 и др.

Стерилизация фильтрованием

Микрофильтрация Мембранные фильтры с размером пор 0,22 и 0,30 мкм.

- Перед работой фильтры промывают в подходящем (указывается в паспорте) растворителе стерилизуют при температуре **120°**С упакованными в два слоя бязи и пергамента. Установк для стерилизации собирают в асептических условиях или стерилизуют в собранном виде.
 - Возможна одновременная депирогенизация растворов
- Фактор риска!!! проскок м\о (вирусов и микоплазм) ввиду нарушения целостности и герметичности. Поэтому используется, когда продукт нестабилен и его конечная тепловая или рад. стерилизация невозможна. После стерил. фильтрованием след. проводить дополнительную обработку продукта нагреванием в гермет. контейнере, но в более щадящих условиях, напр. при 100°С.
- Целостность и герметичность фильтрационной установки д. проверяться перед использованием и подтверждаться после использования путем проведения испытаний: «точка пузырька», «удержание давления» и др. по паспорту.

Ультрафильтрация. Мембранный фильтр, задерживающий вирусы

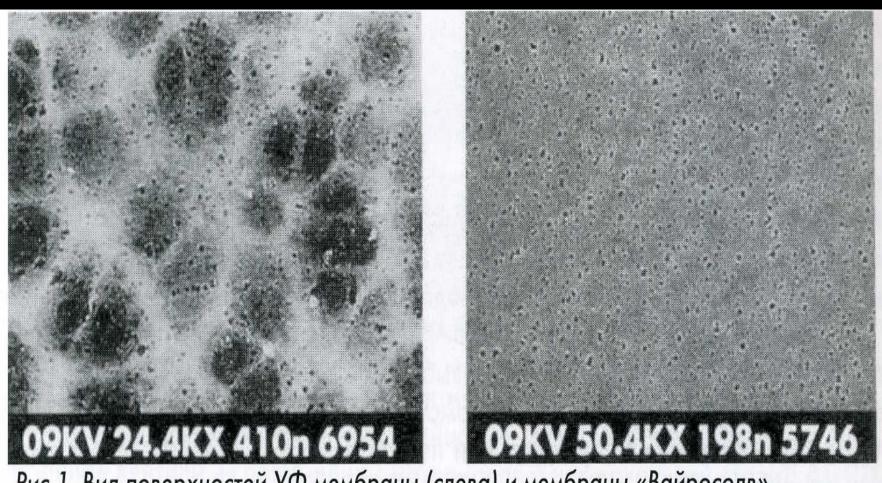


Рис. 1. Вид поверхностей УФ мембраны (слева) и мембраны «Вайросолв»

Радиационная стерилизация – у-излучение

Стандартная бактерицидная доза облучения 25 кГр (2,5 Мрад)

Источники ионизирующих излучений**:** изотопы ${}^{60}\text{Co}_{27}$, ${}^{137}\text{Cs}_{55}$, ускорители электронов.

Ограничение (отрицательный эффект):

- разрушение многих ЛВ,
- накопление в воде продуктов разложения (водорода пероксид)

Предлагается:

- введение стабилизаторов акцепторов продуктов радиолиза;
- криорадиационная стерилизация Раствор перед облучением замораживают;
- Субстерилизация облучение при более низких, чем стерилизующие, дозах. Стерилизующая доза снижается в **5-10** раз. Выдерживание в течение **0,5—3** мес и повторная стерилизация малой дозой.

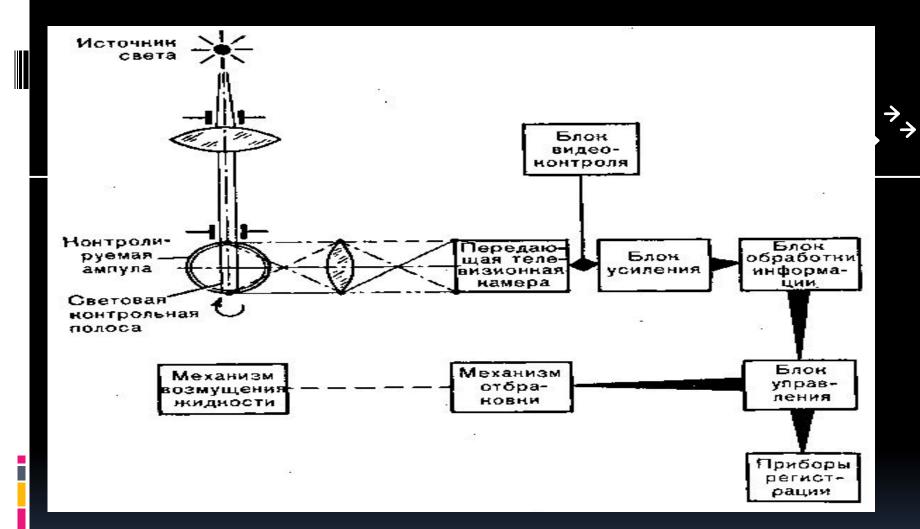
ХИМИЧЕСКАЯ СТЕРИЛИЗАЦИЯ

- газами**:** этилена оксид, смесь оксида этилена и бромистого метила
 - растворами стерилизующих веществ: раствор водорода пероксида 6%
 - Применяется для изделий из резины, полимерных материалов, стекла, металла.
 Проводится в герметичных стерилизаторах.
 Требует последующей дегазации и(или)
 промывания стерильной водой
 - Не используется для стерилизации растворов ЛВ.

ОЦЕНКА ЭФФЕКТИВНОСТИ СТЕРИЛИЗАЦИИ

БИОЛОГИЧЕСКИЕ ИНДИКАТОРЫ СТЕРИЛИЗАЦИИ

- Споры тест-микроорганизмов в ампулах с ПС размещают в областях стерилизующего аппарата, наименее доступных для стерилизующего агента.
 - □ Тест-микроорганизм д.б. :
 - более устойчивым, чем все патогенные м\о,
 - непатогенным,
 - __ легко культивируемым


■Выбор тест-м\о определяется методом стерилиз-и

- □ Паровая стерилизация споры **Bac. stearothermophylus**,
- □ Сухожаровая и химическая стерилизация Bac. subtilis,
- □ Радиационная **Bac. Pumilus**

Введены взамен ранее использовавшихся химических индикаторов (ампулы с бензойной кислотой или сахарозой) и термических (максимальные термометры) индикаторов стерилизации.

КОНТРОЛЬ КАЧЕСТВА ПАРЭНТЕРАЛЬНЫХ РАСТВОРОВ

- Контроль герметичности В растворе метиленовой сини комнатной температуры.
- □ Контроль на механические включения:
 - Визуальный метод <u>Условия контроля</u> черный и светлый фон, проходящий свет, вращение сосуда вокруг своей оси удаление пузырей воздуха.
 - *Визуально-оптические методы* Использование проекторов, увеличительных линз, лазерного луча
 - *Мембранно-микроскопические методы* Раствор пропускают через фильтрующую мембрану (0,4 мкм), окрашенную в черный цвет. После высушивания производят подсчет частиц
 - Оптические методы •

Оптический метод контроля:

регистрация фотоэлементами поглощения или рассеивания проходящего через ампулу с раствором света

Контроль стерильности растворов

•Метод прямого посева.

- •При отсутствии а/м действия при его инактивации.
- Растворы высевают на 2 среды: тиогликолевую и Сабуро, инкубируют 14 суток.
- •При отсутствии роста партия считается стерильной.

•Метод мембранного фильтрования.

- если а/м действие не удается подавить,
- при испытании инфузионных растворов (более 100 мл).
- Раствор фильтруют через стерильную мембрану с размером <u>пор **0.45**мкм. Мембрану</u> разрезают на **2** части, одну часть помещают в колбу с тиогликолевой средой, вторую в среду Сабуро. Инкубируют **7** сут.
- При отсутствии роста делают заключение о стерильности.

ПОКАЗАТЕЛИ КАЧЕСТВА ЛЕКАРСТВЕННЫХ СРЕДСТВ ДЛЯ ПАРЕНТЕРАЛЬНОГО ПРИМЕНЕНИЯ

- описание,
- идентификация,
- прозрачность,
- цветность,
- pH,
- сопутствующие примеси,
- извлекаемый объем,
- стерильность,
- Пирогенные вещества,
- механические включения,
- количественное содержание АДВ, антимикробных консервантов и органических растворителей.
- <u>Для вязких жидкостей</u> дополнительно контролируют плотность.
- <u>Для суспензий</u> размер частиц, однородность содержания (в случае однодозовых суспензий), устойчивость суспензий.
- В порошках для инъекций или внутривенных инфузий дополнительно контролируют время растворения, потеря в массе при высушивании, однородность содержания или однородность массы.

