ПРОТИВОСУДОРОЖНЫЕ СРЕДСТВА

ПОНЯТИЕ ОБ ЭПИЛЕПСИИ

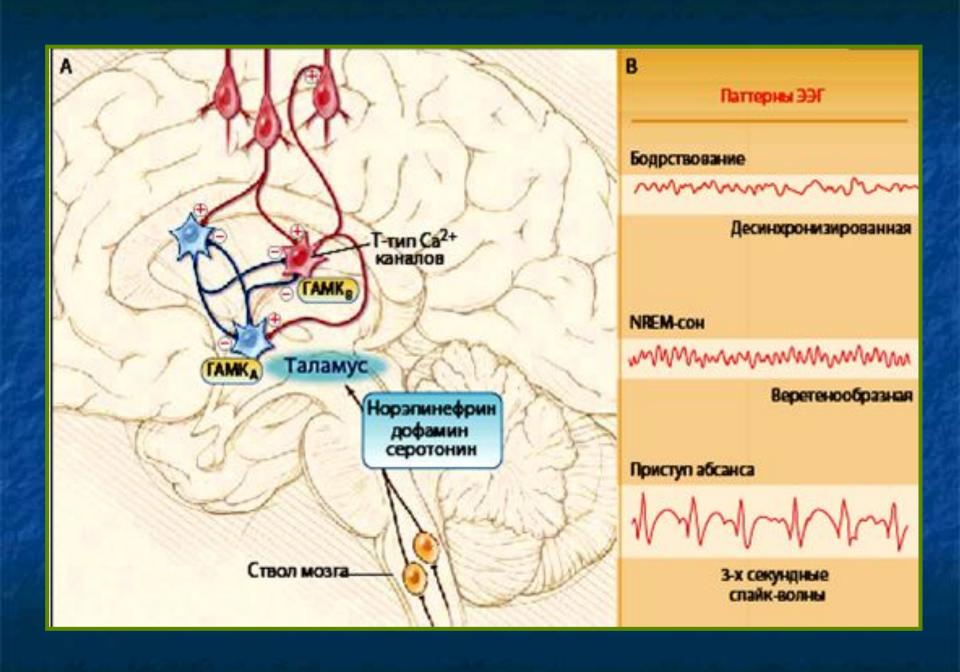
- Эпилепсия неврологическое заболевание (гетерогенный симптомокомплекс) проявляющееся непредсказуемо повторяющимися судорожными припадками (приступами). Более 40 форм.
 - Распространенность 0,8-1% населения, второе по частоте неврологическое заболевание после инсульта.
- Судорожный припадок временное изменение поведения и сознания, вызванное патологическим синхронным ритмичным разрядом группы нейронов головного мозга.
- Источник припадков при эпилепсии кора головного мозга.

NB! ПСС подавляют судорожные припадки, но не препятствуют эпилептогенезу и не обладают профилактическим действием!

КЛАССИФИКАЦИЯ СУДОРОГ

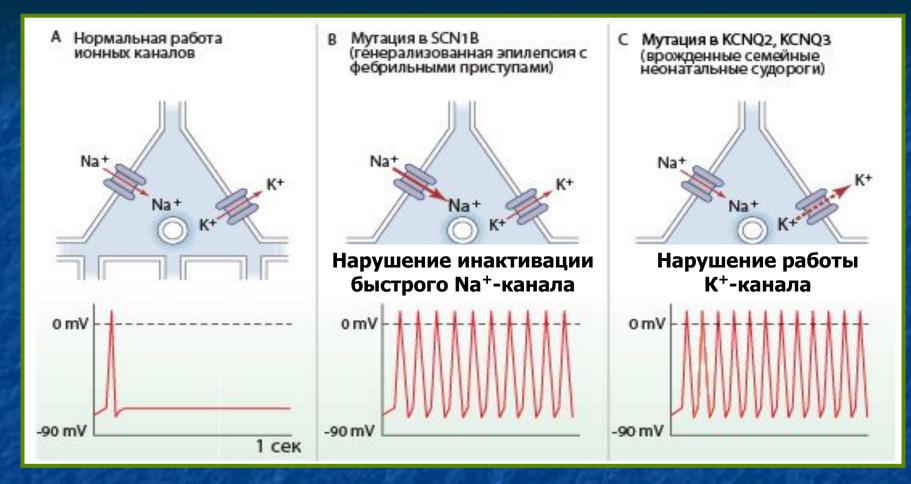
- Парциальные эпилептическая активность исходит из участка коры (очага).
 - <u>Простые</u> сознание сохранено (минимальное распространение аномальных разрядов).
 - <u>Сложные</u> аномальные разряды захватывают долю (в пределах одного полушария, чаще височную) и лимбическую систему. Утрата или затемнение сознания в сочетании с нецеленаправленными движениями, моторные автоматизмы.
 - Вторично генерализованые.
- Генерализованные эпилептическая активность захватывает всю кору обоих полушарий.
 - <u>Абсанс</u> (petit mal) кратковременная утрата сознания (до 40 с) с последующей амнезией. Возникает в детстве, до 100-н раз/сут. ЭЭГ характерные волны (v=2,5-3,5 Гц).
 - Тонико-клонические (grand mal) общее напряжение мышц (тоническая фаза) сменяется чередованием их сокращения и расслабления (клоническая фаза).
 - <u>Миоклонические</u> резкие короткие (до 1 с) мышечные сокращения локальные или генерализованные.

история псс


- 1857 г. бромид калия (сэр Чарльз Локок).
- 1912 г. первое применение фенобарбитала.
- 1938 г. моделирование судорог электрическим разрядом Мерритт и Патнам открыт фенитоин первый ПСС без седативного действия.
- 1935-1965 гг. 13 новых ПСС (химически родственны фенобарбиталу гидантоины, оксазолидиндионы, сукцинимиды).
- 1960-1990-е гг. карбамазепин (1974), вальпроевая кислота (1978).
- С 1990-х новый скачок в создании ПСС габапентин (1993), ламотригин (ламотриджин) (1994), фелбамат (1993), топирамат (1996), леветирацепам (1999), тиагабин (1998), зонисамид (2000).

ПАТОГЕНЕЗ СУДОРОГ

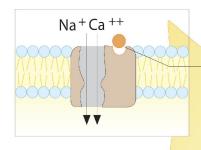
- Парциальные припадки нейроны участка коры деполяризуются и генерируют высокочастотные ПД, не возникающие в норме. Избирательное их угнетение должно обеспечивать купирование судорог.
 - Цель замедлить деинактивацию быстрых натриевых каналов нейрона → подавление высокочастотной импульсации и судорог.
 - NB! На низкочастотную импульсацию длительность инактивации существенно не влияет, с этим связана избирательность действия ПСС для лечения ПС карбамазепина, ламотриджина, фенитоина, вальпроата.
 - ▶ Усиление активности ГАМК подавление и ПС и ГТКС.


• Первично генерализованные припадки

- **Абсансы** реципрокное возбуждение коры и таламуса. Характерна синхронность разрядов на обширном участке коры, которую обеспечивает таламус (возможно + ствол мозга).
- Док-во низкочастотная стимуляция срединных структур таламуса вызывает корковые разряды пик – волна (спайкволны, v=3 Гц), типичные для абсансов (эквивалент на ЭЭГ).
- Возникновение спайк-волн обеспечивается
 - Двусторонними возбуждающими импульсами кора таламус.
 - Особыми свойствами нейронов таламуса значительным входящим током Са²⁺ через каналы Т-типа обеспечивает вспышки разрядов в нейронах и усиливает периодические таламические разряды.
 - NB! Торможение Ca²⁺ тока через T- каналы основной механизм действия для ПСС эффективных при абсансах: этосуксимида, триметадиона, вальпроата.

Общее свойство разных ПСС — подавление потенциалзависимых ионных каналов: при ПС — Na⁺-каналов, при абсансах — Ca²⁺-каналов.

ГЕНЕТИЧЕСКИЕ ФАКТОРЫ



Более 10-ти мутаций, вызывают эпилепсию у человека. В основном — гены дегенеративных заболеваний ЦНС.

идеопатическая эпилепсия

Установлены гены 4-х форм ИЭп. Гены потенциалзависимых или хемочувствительных ионных каналов.

мишени псс

NMDA-_рецептор

Антагонист

фелбамат,

вальпроат

NMDA-рецепторов

Возбужд<mark>аю</mark>щий нейрон

Ингибирование высвобождения глутамата

фенитоин, ламотриджин, фенобарбитал

Ca ²⁺- канал

Блокаторы Са ²⁺ каналов Т-типа

этосуксимид, вальпроат

Потенциал-_{_} зависимые ⁻ Na ⁺-каналы

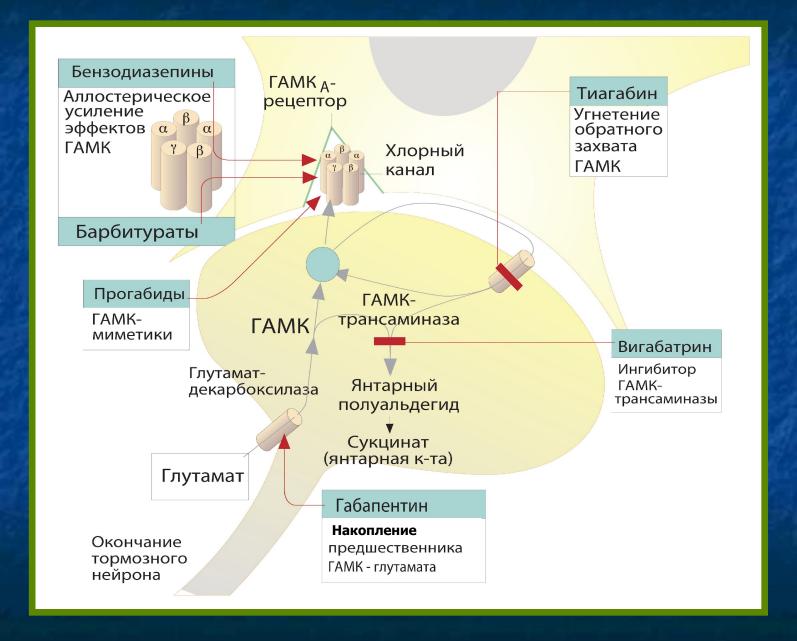
Продление неактивного состояния

карбамазепин вальпроат фенитоин

рецептор

ΓΑΜΚ_A-

Тормозно<mark>й</mark> нейрон


ГАМК-миметики:

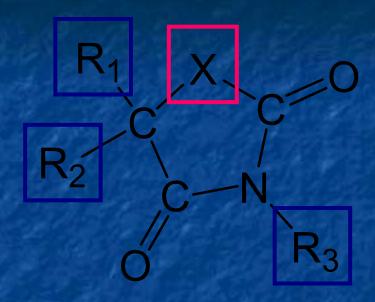
бензодиазепины барбитураты вигабатрин тиагабин габапентин

МЕХАНИЗМЫ ДЕЙСТВИЯ ПСС

- Облегчение ингибиторной (ГАМК-зависимой)
 передачи (генерализованные и парциальные судороги).
 - Прямое действие на комплекс ГАМКр-СІ канал
 - Аллостерическое усиление эффектов ГАМК бензодиазепины, барбитураты.
 - ▶ Агонисты ГАМКр прогабиды (топирамат).
 - Влияние на обратный захват и метаболизм ГАМК
 - Угнетение обратного захвата, увеличение концентрации в синаптической щели – тиагабин.
 - Ингибирование разрушения ГАМК, накопление в везикулах
 вигабатрин.
 - Накопление предшественника ГАМК (глутамата) в нейроне,
 ускорение синтеза ГАМК габапентин.

МИШЕНИ ГАМК-МИМЕТИКОВ

МЕХАНИЗМЫ ДЕЙСТВИЯ ПСС


Подавление возбуждающей (глутаматергической) передачи.

- Блокада АМРА-рецепторов (ионотропных глутаматных р-ров, чувствительных к действию альфа-амино-3-гидрокси-5-метил-4изоксазол-пропионовой кислоты) – частично фенобарбитал и топирамат.
- Блокада NMDA-рецепторов (открывают Na⁺- и Ca²⁺-токи в нейрон) вальпроат, фелбамат, ремацемид (изучается).
- Ингибирование высвобождения глутамата фенитоин, ламотриджин, фенобарбитал.

модификация ионных токов

- Пролонгирование инактивации потенциал-зависимых Na⁺- каналов с увеличением рефрактерности фенитоин, карбамазепин, ламотриджин, частично фенобарбитал, вальпроат, топирамат. Итог подаление быстрых, повторяющихся разрядов отдельных нейронов.
- Угнетение низкопорогового Са²⁺-тока (Т-типа) в таламических нейронах этосуксимид, вальпроат, диметадион (абсансы).

СТРУКТУРНЫЕ ОСОБЕННОСТИ ПСС

- -N- дериваты гидантоина, -C-N- барбитураты, -O- оксазолидиндионы, -C- сукцинимиды -NH2 у ацетилмочевины (N соединяется с C2). R1-R3 различаются в подгруппах.
- Общая структура гетероциклическое кольцо со множеством замещений, которые определяют фармакологический класс: анти-MES или антипентилентетразол.

ФАРМАКОКИНЕТИКА ПСС

- F = 80-99%.
- Незначительно связываются с БПК. Исключение фенитоин, вальпроат (вытесняют др. ЛС), бензодиазепины (концентрации низки).
- Распределение жидкие среды.
- Для большинства СL низкий.
- Т1/2 ~ 12 ч (среднего и пролонгированного действия).
- Метаболизм печень, линейная кинетика, исключение
 фенитоин (0-порядка в высоких дозах).
- Фенобарбитал и карбамазепин мощные индукторы микросомальных ферментов.
- Выведение печень, в т.ч. метаболиты; почки.

ОСНОВЫ ПРОТИВОСУДОРОЖНОЙ ТЕРАПИИ

- ПСС выбирают в зависимости от вида припадка, а не от причины или формы эпилепсии.
- Предпочтительна монотерапия.
- Сочетают ПСС с разными механизмами действия.
- Подбор дозы или изменение схемы определение [С]
 в плазме крови (ориентировочный характер).
- Главный критерий эффективность и переносимость.
- Комплаентность!
- Длительность лечения годы, отмена медленная (месяцы), при быстрой – синдром отмены.

ФАРМАКОДИНАМИЧЕСКИЕ ОСОБЕННОСТИ ПСС

- Прямая зависимость [С] в плазме крови эффект.
- ТИ для большинства ПСС низкий, часты токсические эффекты.
- Вероятность побочных эффектов ПСС 15%.
- Синдром отмены зависит от клинического течения эпилепсии и групповой принадлежности ЛС. Наиболее тяжелый – барбитураты, бензодиазепины (отмена месяцы).
- Передозировка респираторная депрессия, лечение симптоматическое.
- Тератогенность риск пороков развития выше в 2 раза. Фенитоин гидантоиновый синдром плода, вальпроат spina bifida (риск 1-2%). Беременным снизить дозу ПСС до минимальной эффективной, уменьшить количество ПСС.

ПАРЦИАЛЬНЫЕ И ГЕНЕРАЛИЗОВАННЫЕ ТОНИКО-КЛОНИЧЕСКИЕ СУДОРОГИ

- **Фенитоин** (проЛС для парентерального применения фосфенитоин).
- Механизм действия:
- [Стер] связывается с инактивированными Na⁺- каналами, продлевает их инактивацию блокирует продолжительные высокочастотные разряды ПД.
- [Свысокие] снижение спонтанной импульсной активности, сенсибилизация к ГАМК, подавляет высвобождение серотонина и НА (нарушает Са²⁺-токи в нейрон), усиливает захват дофамина, снижает активность МАО, стабилизирует мембраны.

Фармакокинетика

<u>Адсорбция</u> зависит от ЛФ (перорально F – высокая, в/м – преципитаты, только фосфенитоин!).

Кинетика элиминация – зависит от дозы.

При [C] < 10 мкг/мл – T_{1/2}=12-24 ч, Css достигается ч/з 5-7 сут.

При высоких [C] возрастает T_{1/2} (кинетика 0-порядка), достижение Css — 4-6 недель.

ВД – 300 мг/сут, разовое увеличение дозы не более 25-30 мг через $\Delta T = 5 \ T_{1/2}$.

NB! Между дозой и сывороточной концентрацией <u>нет линейной</u> <u>зависимости даже в терапевтическом диапазоне</u>.

NB! Даже при минимальном увеличении дозы возможны токсические эффекты.

Метаболизм – печень, выведение – почки.

- Применение ПС и Г (первично и вторично) ТКС.
- Побочные эффекты:
 - Нистагм, диплопия и атаксия.
 - Гипертрихоз и гиперплазия десен.
 - Периферическая нейропатия.
 - Гематологические нарушения анемии или нейтропении.

Карбамазепин

- Механизм действия похож на фенитоин.
- Применение ЛС выбора при ПС, начальная терапия ГТКС. В терапевтических дозах седации не вызывает.

Другие показания – МДП, невралгия тройничного нерва.

- Фармакокинетика
 - Высокая F, Cmax через 6-8 ч.
 - Vd = 1 л/кг, связывание с БПК \sim 70%, CL = 1 л/кг/сут.
 - Индуцирует микросомальные ферменты печени (IIIA4 цит.Р450) → Т1/2 начальный = 36 ч затем 20 ч и менее.
 - Полностью метаболизируется, в т.ч. в активные метаболиты.
 - Выведение почки.
- Побочные эффекты см. фенитоин.

Фенобарбитал – производное барбитуровой кислоты (рКа=7,4).

- ЛС выбора для грудных детей.
- Механизм действия:
 - Аллостерическое усиление эффектов ГАМК (увеличивает время открытия CI-канала).
 - Ингибирование высвобождения глутамата.
 - Селективно подавляет активность аномальных нейронов, блокируя высокочастотные повторяющиеся разряды за счет блокады Na⁺ и Ca²⁺ (L- и N-типы) токов (высокие [C]).
- Фармакокинетика
 - Высокая F.
 - Выведение -- ¼ с мочой (зависит от рН), остальное метаболизируется в печени индуцирует глюкуронилтрансферазы, а также изоферменты подсемейств IIC и IIIA цит. Р450.
- Применение ПС и ГТКС.
- Побочные эффекты:
 - Сонливость (быстро толерантность).
 - Нистагм, атаксия, парадоксальное возбуждение.

Вигабатрин

Механизм действия:

- Необратимо ингибирует ГАМК-аминотрансферазу, повышает синаптическую концентрацию ГАМК.
- Фармакокинетика
 - Высокая F, T_{1/2}=6-8 ч.
 - Выведение -- кинетика линейная, с мочой (неактивные метаболиты).
- Применение ПС.
- Токсичность:
 - Сонливость, головокружение, прибавка в весе.
 - Психозы.
 - Длительное применение необратимое сужение полей зрения (30%).

Ламотриджин

- Механизм действия:
 - Подавляет фоновые (повторяющиеся) быстрые разряды в нейронах за счет инактивации Na⁺каналов.
 - Возможно блокирует потенциал-зависимые Ca²⁺каналы.
- Фармакокинетика
 - Высокая F, Vd=1-1,4 л/кг, T_{1/2}=24 ч.
 - Выведение кинетика линейная, метаболизируется за счет глюкуронизации, с мочой.
- Применение ПС.
- Побочные эффекты:
 - Сонливость, диплопия, головная боль.
 - Кожные сыпи.

ГЕНЕРАЛИЗОВАННЫЕ СУДОРОГИ

Этосуксимид – средство выбора при абсансе.

- Механизм действия:
 - Снижает низкопороговые токи Ca²⁺ (T-типа), которые в таламических нейронах играют роль водителей ритма, генерируя ритмические корковые импульсы абсанса.
- Фармакокинетика
 - Высокая F, Vd=0,7 л/кг (не проникает в жировую ткань),
 не связывается с БПК, T1/2=40 ч.
 - Выведение кинетика линейная, CL=0,25 л/кг/сут., метаболизируется гидроксилированием, с мочой.
- Применение абсанс.
- Побочные эффекты:
 - Раздражение ЖКТ.
 - Сонливость, головная боль.

Вальпроат натрия и вальпроевая кислота

- Механизм действия (предполагаемый):
 - Блокирует высокочастотные повторяющиеся разряды нейронов за счет блокады Na⁺- токов.
 - Увеличивает содержание ГАМК (ингибирует ГАМК-Т) (высок.[С]).
 - Увеличивает проводимость для К+.
- Фармакокинетика
 - Высокая F, pKa=4,7 (в крови ионизирован), на 90% связывается с БПК, Vd=0,15 л/кг, $T_{1/2}$ =9-18 ч.
 - Выведение кинетика линейная, при высоких концентрациях 0-порядка, метаболизируется.
- Применение
 - Абсанс при генерализации судорог (ЛС выбора), миоклонус, ГТКС и атонические С, иногда ПС.
 - Другие МДП, профилактика приступов мигрени.
- Подавляет метаболизм фенитоина, карбамазепина, фенобарбитала.
- Побочные эффекты:
 - Раздражение ЖКТ.
 - Сонливость, тремор, аллопеция, стимуляция аппетита.
 - Гепатотоксичность.

Бензодиазепины

Диазепам, Лоразепам — эпилептический статус. <u>Клоназепам</u> — абсанс, миоклонус. Клоразепат — ПС, Нитразепам — миоклонус. NB!

- Выраженное седативное действие.
- Толерантность.
- Мишень бензодиазепиновый ГАМК-рецептор.
- Фармакокинетика хорошо всасываются,
 распределяются, интенсивно метаболизируются с образованием множества активных метаболитов,
 Т1/2=20-40 ч.

СРЕДСТВА КУПИРОВАНИЯ ЭПИЛЕПТИЧЕСКОГО СТАТУСА

- ПСС вводят только в/в (не в/м!).
- Варианты начального лечения:
 - Диазепам в/в до 20-30 мг, продолжительность действия
 30-40 мин (угнетает дыхание), затем фенитоин.
 - 2 Только фенитоин в ВД = 13-18 мг/кг со скоростью не более 50 мг/мин, в/в, медленно на физрастворе (не глюкозе!) или фосфенитоин (ниже активность на 25-30%, ниже риски).
 - 3. Лоразепам действует длительнее диазепама.
 - 4 При неэффективности фенобарбитал по 100-200 мг в/в до 400-800 мг. Осложнение респираторная депрессия.
 - Резистентность общая анестезия.
- Эффективность 44-65%.

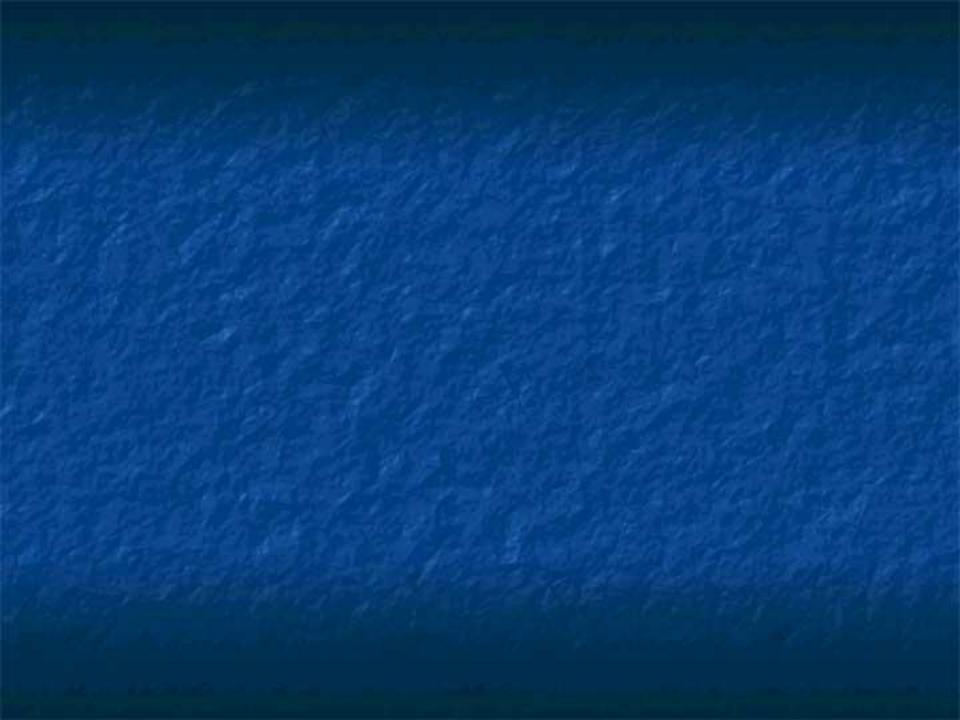
СРЕДСТВА ДЛЯ ЛЕЧЕНИЯ НЕЙРОДЕГЕНЕРАТИВНЫХ БОЛЕЗНЕЙ

ДЕГЕНЕРАТИВНЫЕ БОЛЕЗНИ ЦНС

Характеризуются прогрессирующей и необратимой гибелью нейронов в определенных отделах головного и спинного мозга.

- Гибель нейронов базальных ядер нарушения движения.
 - Болезнь Паркинсона.
 - Болезнь Гентингтона.
- Гибель нейронов коры и гипокампа когнитивные расстройства.
 - Болезнь Альцгеймера.
- Гибель спинальных, стволовых, корковых мотонейронов
 мышечная слабость.
 - Боковой амиотрофический склероз.


NB! Фармакотерапия только симптоматическая, на течение не влияет


ПАТОГЕНЕТИЧЕСКИЕ ОСОБЕННОСТИ НДБ

- Избирательность поражения.
- Генетическая детерминированность.
 - Б-нь Гентингтона аутосомно-доминантное наследование.
 - Другие не доказана.
- Нейротоксическое действие возбуждающих медиаторов.
 - Нейротоксические эффекты глутамата с уровня NMDAрецепторов (избыточный вход Ca²⁺).
- Энергетический обмен и возраст.
- Свободнорадикальное окисление.

БОЛЕЗНЬ ПАРКИНСОНА

- Паркинсонизм синдром (описан в 1817 г. Джеймсом Паркинсоном), который складывается из 4-х характерных признаков:
 - Гипокинезия (замедление и бедность движений)
 - Ригидность (повышенный мышечный тонус)
 - Тремор покоя
 - Расстройства постуральных рефлексов (нарушения походки и равновесия)
- Без лечения быстро прогрессирует (5-10 лет тяжелая инвалидность).
- Патогенез гибель дофаминергических нейронов компактной части черной субстанции, посылающих импульсацию к стриатуму (хвостатому ядру и скорлупе).
- Главная a-wbz стриопаллидарной системы коррекция команд, поступающих от коры головного мозга к спинальным мотонейронам.

