

International Atomic Energy Agency

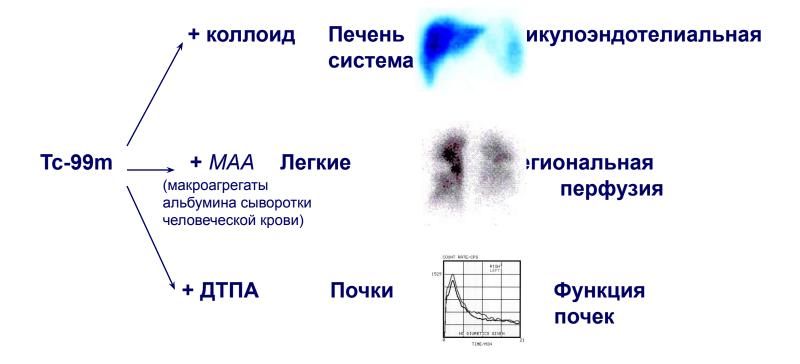
РАДИАЦИОННАЯ ЗАЩИТА В ЯДЕРНОЙ МЕДИЦИНЕ

Часть 0: Основы Ядерной Медицины

Ядерная Медицина

Диагностика и терапия с использованием открытых источников

Клиническая задача


Радиофармпрепарат Оборудование

РАДИОФАРМПРЕПАРАТЫ

Радионуклид Фармпрепарат Орган

Параметр

История - Радионуклиды

1896	Естественная радиоактивность Беккерель			
1898	Радий	Кюри		
1911	Атомное ядро	Резерфо	рд	
1913	Модель атома	Бор		
1930	Циклотрон	Лоуренс		
1932	Нейтрон	Чедвик		
1934	Искусственный радион	нуклид Ж	Солио-Кюри	
1938	Производство и распо	знание Йод _'	-131 Ферми и д.р.	
1942	Ядерный реактор	Ферм	ии и д.р.	
1946	Радионуклиды в прода	аже Ха	арвелл	
1962	Tc-99m в ядерной мед	ицине Ха	арпер	

Первооткрыватели

Анри Беккерель

Эрнест Резерфорд

Мария Склодовская-Кюри

Фредерик и Ирен Жолио-Кюри

СОВРЕМЕННЫЕ МЕТОДЫ – ТЕРАПИЯ

Радиофармпрепарат Максимальная

Показания

Способ

введения активность

I-131 йодид Тиреотоксикоз пероральный

1 ГБк

I-131 йодид Рак щитовидной пероральный

20 ГБк

железы

I-131 MIBG Онкология внутривенный 10

ГБк

(метаиодобензилгуанидин)

P-32 фосфат Polycythaemia vera внутривенный 200 МБк

или пероральный Sr-89 хлорид Метастазы в кости внутривенный 50 МБк

Ү-90 коллоид Артрит внутрисуставный 250 МБк

Злокачественные внутриполостной 5 ГБк

выпоты

Yr-169 коллоид Артрит внутрисуставный Re-186 коллоид Артрит Артрит Внутрисуставный

50 ME/kg

ИСТОРИЯ - ТЕРАПИЯ

```
1936
      Терапевтическое использование Na-24 (лейкоз)
(Hamilton et al)
1936 Терапевтическое использование Р-32 (лейкоз и истинная
полицитемия)
   (Lawrence)
1941 Терапевтическое использование йода при гипертиреозе
   (Hertz et al)
1942 Терапевтическое использование йода в лечении
   метастаз рака щитовидной железы
1945 Терапевтическое использование Au-198 в лечении
зпокачественных выпотов
   (Muller)
1958 Лечение костных метастазов с помощью Р-32
   (Maxfield)
1963 Медицинская синовэктомия с использованием Au-198
```

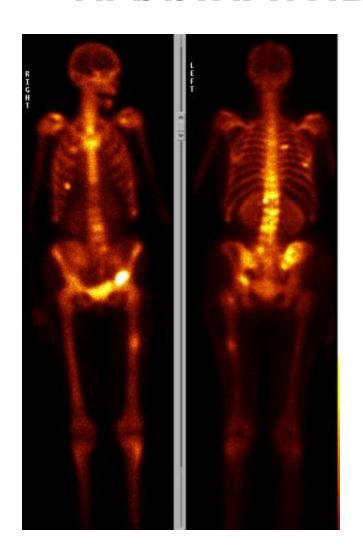
(Ansell)

I-131 ТЕРАПИЯ

Поглощенная доза излучения должна быть определена исходя из измерений накопления, периода полувыведения радиофармпрепарата (РФП) и размера щитовидной железы.

Радиофармпрепарат вводят перорально

Гипертиреоз


Вылечен через 3-4 месяцев 1 год 85% 98% Гипотиреоз через <7 лет через >7 лет 14.8% 27.9%

РАДИОСИНОВЭКТОМИЯ

ПАЛЛИАТИВНОЕ ЛЕЧЕНИЕ

Внутривенная инъекция радиофармацевтических препаратов, которые содержат, например, Sr-89 или Sm-153

ЧАСТОТА ИСПОЛЬЗОВАНИЕ ЗА ГОД -ТЕРАПИЯ (Швеция 1995)

Количество больных на 1000 населения

Щитовидная железа (опухоли и гипертиреоз) 0.39

Истинная полицитемия

0.034

Другие опухоли

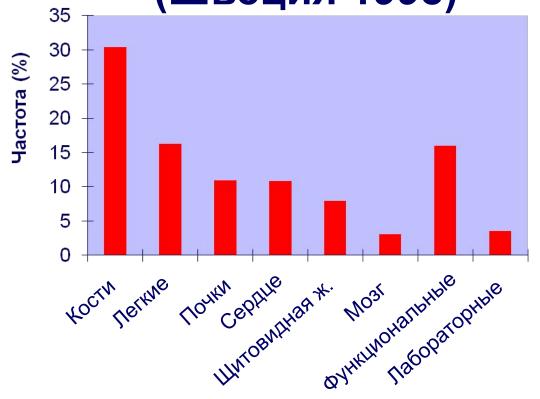
0.003

Другие

0.001

Всего коло 3% от всех процедур ядерной медицины 0.428

СОВРЕМЕННЫЕ ДИАГНОСТИЧЕСКИЕ МЕТОДЫ


• Визуализация

Кости, мозг, легкие, щитовидная железа, почки, печень / селезенка, сердечно-сосудистая система, желудок / желудочно-кишечный тракт, опухоли, абсцессы...

- Не связанные с визуализацией (функциональные) Поглощение в щитовидной железе, ренография, сердечный выброс, резорбция желчных кислот...
- Лабораторные тесты скорость клубочковой фильтрации, эффективный почечный плазмоток, объем / выживание эритроцитов, определение абсорбции (В12, железа, жиров), объем крови, обмен электролитов, воды, костный метаболизм...
- Радиоиммунные анализы (РИА)
- Интраоперационное использование методов радионуклидной визуализации

ЧАСТОТА ИСПОЛЬЗОВАНИЯ В ГОД - ДИАГНОСТИКА (Швеция 1998)

15 обследований/1000 населения

Здравоохранение - уровень 1

Страна	1970-	1980-	1985-	Страна	1970-	1980-	1985-
-	79	84	90		79	84	90
Аргентина			11.5	Кувейт			13.1
Австралия	3.8	8.9	8.3	Люксембург			23.5
Австрия	18.0			Нидерланды			11.6
Бельгия			36.8	Новая Зеландия	5.6	7.3	7.5
Болгария		13.0		Норвегия	3.9		9.3
Канада			12.6	Румыния		3.0	3.5
Чешская Респуб.	13.6	18.3	22.9	Швеция	9.8		12.6
Дания	14.0	14.2	13.4	Швейцария	44.9		
Финляндия	12.6	17.7		CCCP		3.9	
Франция		9.0	6.9	Великобритания		6.8	
Германия	31.1	39.7	39.8	США			25.7
Италия	6.0		7.3	Югославия			6.1
Япония			8.3				
				Среднее	11	6.9	16

Общее число обследований методами ядерной медицины на 1000 населения (НКДАР ООН)

Здравоохранение - уровень 2

Страна	1970-79	1980-84	1985-90	Страна	1970-79	1980-84	1985-90
Барбадос			1.0	Ирак			1.2
Бразилия			1.7	Ямайка	2.8		2.0
Китай			0.6	Перу			0.2
Куба	0.8			Тунис			1.0
Эквадор	0.5		0.8	Турция			2.5
Индия		0.1	0.2				
				Среднее	0.9	0.1	0.5

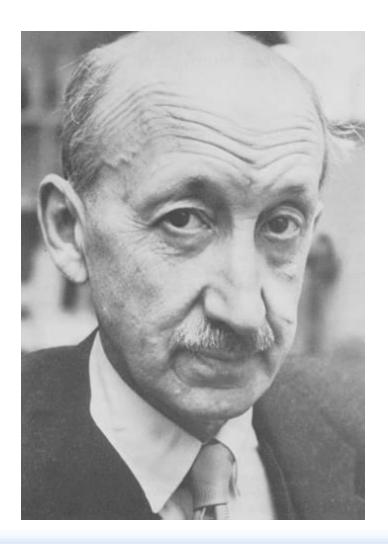
Здравоохранение - уровень 3

Страна	1970-79	1980-84	1985-90	Страна	1970-79	1980-84	1985-90
Египет	0.07	0.21	0.48	Судан	0.12	0.28	0.28
Мьянма	0.54	0.36	0.11	Таиланд	0.25	0.18	0.26
				Среднее	0.25	0.25	0.30

Здравоохранение - уровень 4

Страна	1970-79	1980-84	1985-90		1970-79	1980-84	1985-90
Эфиопия		0.014	0.10				
				Среднее		0.014	0.10

Общее число обследований методами ядерной медицины на 1000 населения (НКДАР ООН)


ИСТОРИЯ – ДИАГНОСТИКА

192 <i>1</i>	Исследования кровотока (Ві-21	4) Blumgart-Weiss
1935	Костный метаболизм (Р-32)	Chiewitz-de Hevesy
1939	Исследования щитовидной жел	тезы (I-131) Hamilton и др.
1948	Радиокардиография (Na-24)	Prinzmetal et al и др.
1956	Ренография (I-131)	Taplin, Winter
1957	Сканирование печени (Au-198	коллоид) Friedell и др.
1961	Остеосцинтиграфия (Sr-85)	Fleming и др.
1962	Сердце (Rb-86, Cs-131)	Carr и др.
1964	Сканирование легких	Taplin и др.
1965	Сканирование мозга (Тс99т-пе	ртехнетат) Bollinger и др.
1971	Остеосцинтиграфия (Тс99т-ко	мплекс)Subramanian и др.

Division out Maion

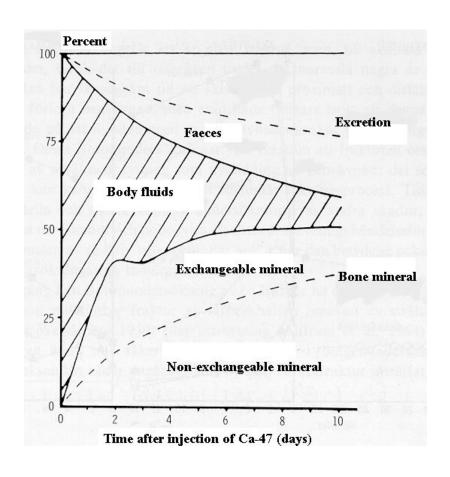
Джордж де Хевеши (George de Hevesy) 1885-1966

de Hevesy G & Paneth F. Die Lösligkeit des Bleisulfids und Bleichromats. Z. Anorg Chem 82, 323, 1913.

de Hevesy G. III. Поглощение и транслокация свинца растениями (The absorption and translocation of lead by plants)

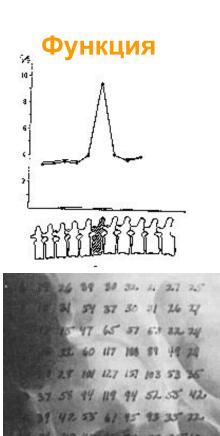
Biochem J, 17, 439, 1923.

Chiewitz O. & de Hevesy G. Радиоактивные индикаторы в исследовании метаболизма фосфора у крыс (Radioactive indicators in the study of phosphorous metabolism in rats) Nature 136, 754, 1935.



МИНЕРАЛЬНЫЙ ОБМЕН

Göran C. H. Bauer Arvid Carlsson Bertil Lindquist

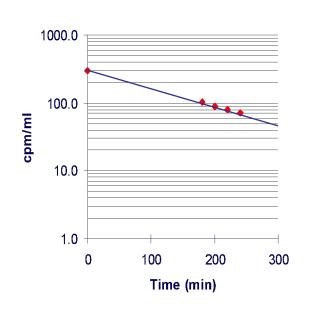

МИНЕРАЛЬНЫЙ ОБМЕН (Mineral Metabolism) (1961)

...исследования костей радионуклидными методами вышли за пределы методики и в настоящее время предоставляют данные имеющее непосредственное физиологическое и клиническое значение.


Исследования костей

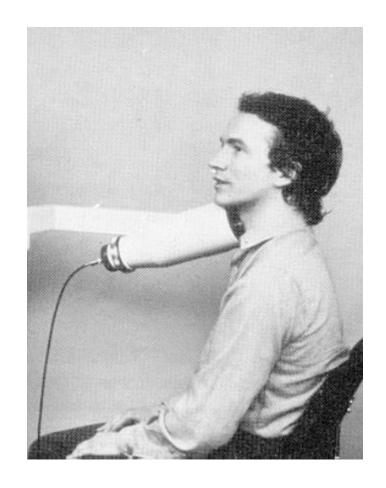
ПРИБОРЫ, ИСПОЛЬЗУЕМЫЕ В ЯДЕРНОЙ МЕДИЦИНЕ

- Радиометр дозкалибратор
- Счётчик проб
- Одно-и многодетекторные системы
- Гамма-камеры
- Однофотонный эмиссионный компьютерный томограф (ОФЭКТ)
- Позитронно- эмиссионный томограф (ПЭТ)



Почечный клиренс (Пробы плазмы)

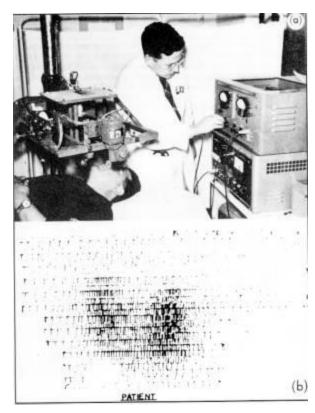
⁵¹Cr-ЭДТА, 300 кБк Пробы плазмы спустя 180-240 мин после введения РФП


Скорость выведения, клиренс (CI) вычисляется по формуле:

$$CI = A / \int_{0}^{\infty} C_{p}(t) * dt$$

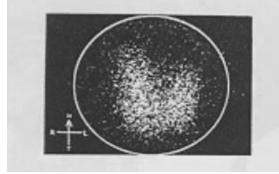
А – введенная активность С_р – концентрация активности в плазме

НАКОПЛЕНИЕ ЙОДА ЩИТОВИДНОЙ ЖЕЛЕЗОЙ



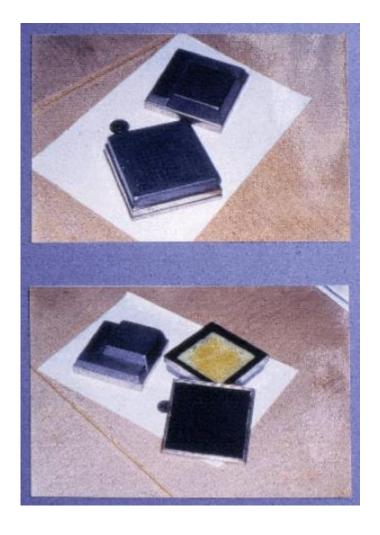
история – инструменты

1908	Визуальная сцинтилляция (ZnS) Crookes					
1927	Счетчик Гейгера	Gei	ger			
1944	Сцинтилляционный детектор (ZnS+PM)					
		Curran				
1948	Кристалл йодистого	натрия	Hofstadter			
1950	Сканер	Cas	sen			
1957	Гамма-камера	Ang	ger			
1963	Томография		Kuhl			



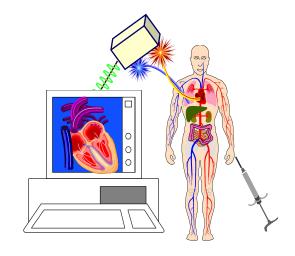
Первооткрыватели

B. Cassen Anger



H.O.

Гамма камера?



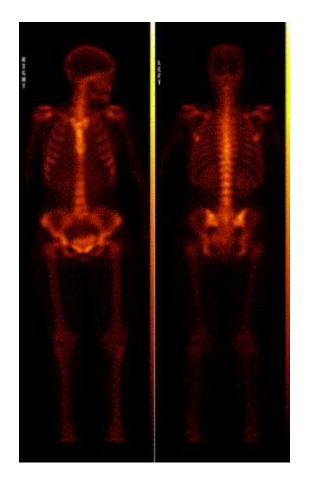
Гамма камера!

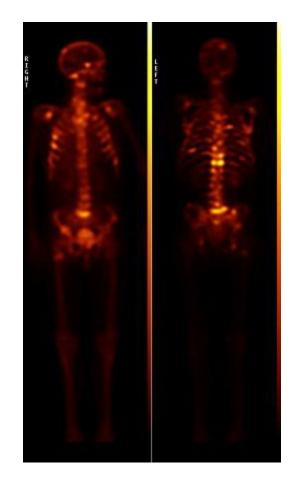
ИЗОБРАЖЕНИЯ В ЯДЕРНОЙ МЕДИЦИНЕ

- Радионуклидная визуализация определяет функциональные (а не анатомические) свойства человеческой ткани.
- Изображение создаётся путем индикации распределения радиофармпрепаратов в организме с помощью гамма-камеры



Сцинтиграфия костей


- •Поглощение 99mTc-MДФ(MDP) костью отражает костный метаболизм и кровоток и позволяет проводить функциональный анализ костной ткани
- Визуализация изменений костного метаболизма позволяет обнаруживать повреждения, такие как: костные метастазы доброкачественные и злокачественные опухоли травмы костей
- Для выявления остеомиелита требуется проведение трехфазной сцинтиграфии
- Остеосцинтиграфия также полезна для проведения последующего врачебного наблюдения при других заболеваниях костей, таких как

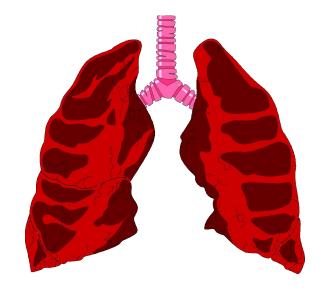

болезнь Педжета

Внутривенное введение 400-600 МБк 99mTc- МДФ(МDР)
 . Визуализация через 3 часа после инъекции

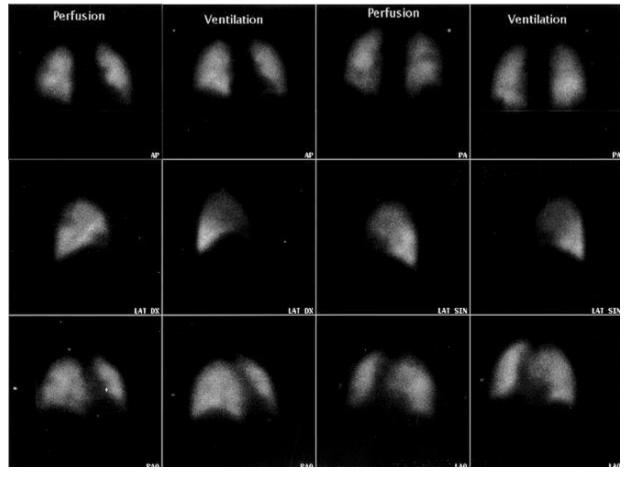
Сцинтиграфия костей (Остеосцинтиграфия)

норма

патология

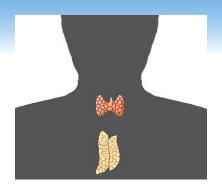

Исследования легких

Пропорциональная эмболизация легочных капилляров позволяет визуализировать перфузию легких (используя Tc99m MAA). Это изображение помогает в диагностике легочной эмболии.

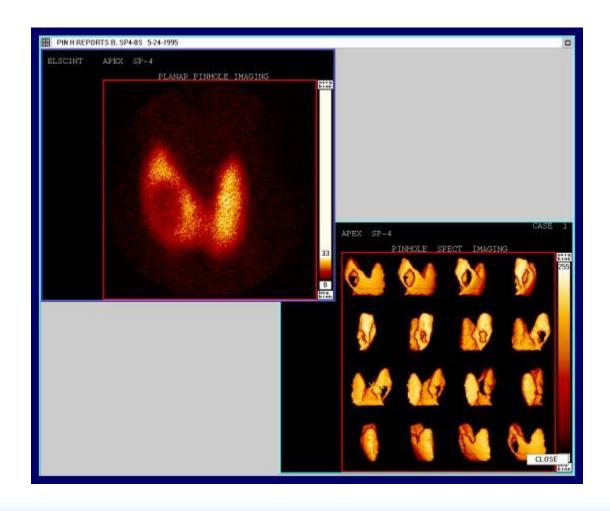

Внутривенное введенияе 100 МБк Tc99m MAA. Немедленное сканирование.

Вентиляционные исследования (используя ^{99m}Тс-аэрозоли) отражают региональную и сегментарную вентиляции. Интерпретация исследования осуществляется в сочетании с результатами перфузионного сканирования, помогая дифференциальной диагностике легочной эмболии.

Вдыхание 100 МБк Тс99m-аэрозоли. Немедленное сканирование

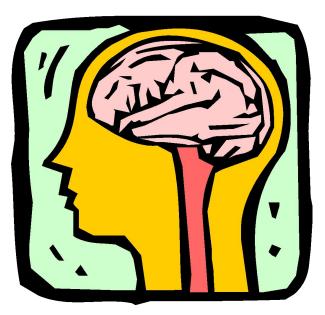


Вентиляционно-перфузионная сцинтиграфия легких

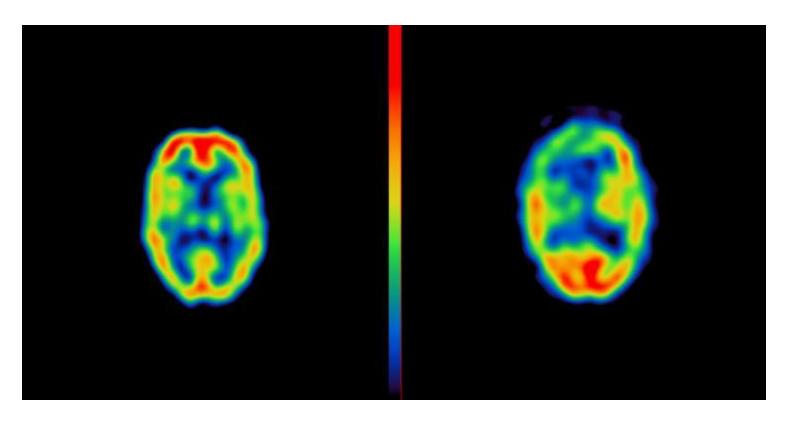

ЩИТОВИДНАЯ ЖЕЛЕЗА

Сцинтиграфия щитовидной железы (при использовании ¹²³I, ¹³¹I или ^{99m}Тс пертехнетат) позволяет получить информацию о структуре и функции, визуализируя щитовидную железу и производя расчет накопления, объема органа и т.д. ОФЭКТ исследования дают отличную контрастность и разрешение по сравнению с планарным изображением, что способствует обнаружению и оценке узловых образований в щитовидной железе.

Внутривенное введения 100 МБк ^{99m}Тс-пертехнетата. Сканирование через 15 минут


Сцинтиграфия ЩИТОВИДНОЙ ЖЕЛЕЗЫ

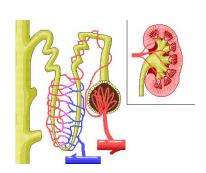
ЦЕРЕБРАЛЬНЫЙ КРОВОТОК

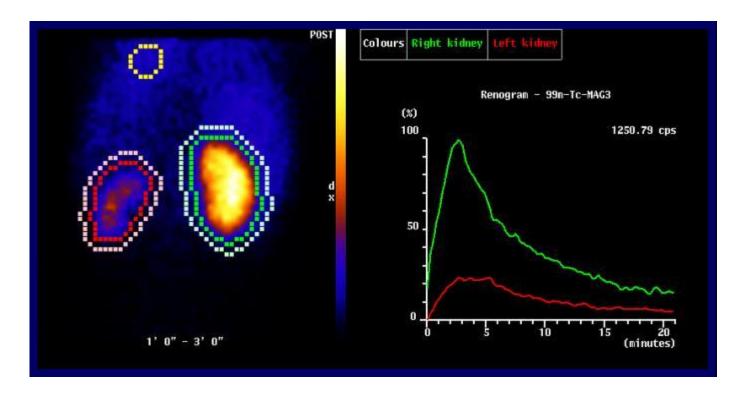

- 99mTc HMPAO или аналогичные соединения накапливаются в мозге пропорционально регионарному мозговому кровотоку
- Локализуется преимущественно в сером веществе и не перераспределяется

- ■Помогает в обнаружении: деменций мозга, таких как болезнь Альцгеймера; локализации судорожных очагов; церебральных сосудистых проблем, таких как ишемия головного мозга; травмы и смерть мозга
- ●Внутривенное введение 800 МБк ^{99m}Тс НМРАО. Томография через

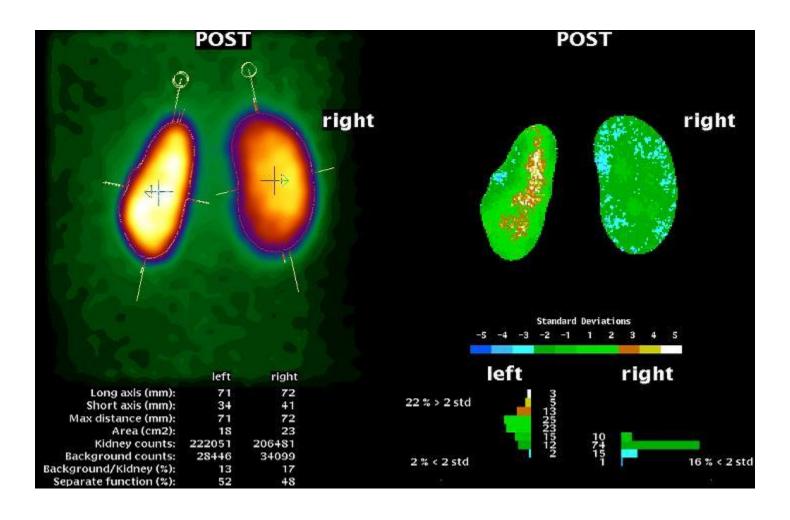
ЦЕРЕБРАЛЬНЫЙ КРОВОТОК

Нормальный

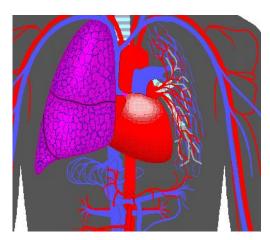

Болезнь Альцгеймера


Функция почек

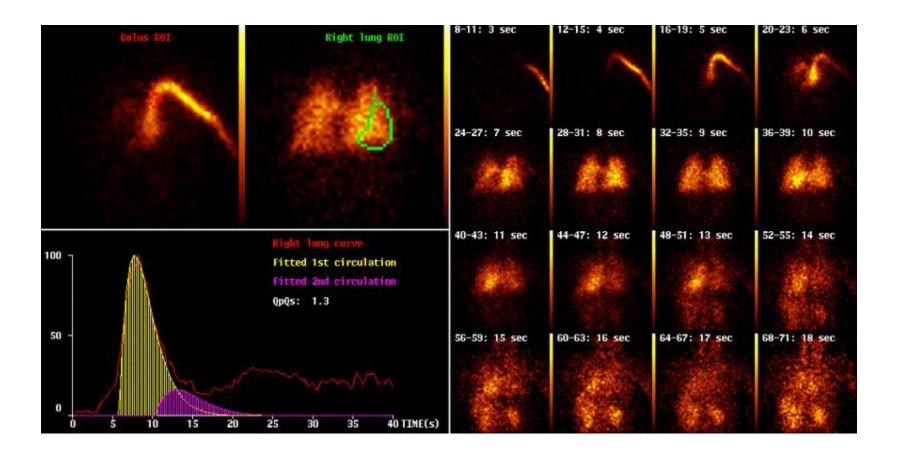
- Определение почечного клиренса с ⁵¹Cr-ЭДТА или ^{99м}Tc-ДТПА.
- Динамическая сцинтиграфия почек отражает почечную перфузию крови, накопление и экскрецию. Во время проведения обследования набирается серия изображений. При вычислении скорости счета в определенной области интереса (ROI), получается ренограмма, которая предоставляет количественные данные. Для оценки почечного клиренса и функции используются различные радиофармпрепараты, такие как ^{99m}Tc-MAG3, ^{99m}Tc-ДТПА и ¹²³I-Hippuran
- Для оценки паренхиматозной анатомии и функции использует ^{99m}Tc-DMSA



ФУНКЦИЯ ПОЧЕК (99mTc-ДТПА)

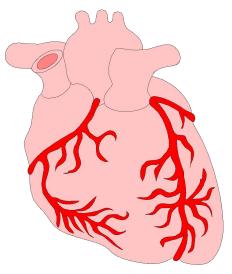

В идеале, участок фона должен выбираться таким образом, чтобы исключить артерии и область почечной лоханки.

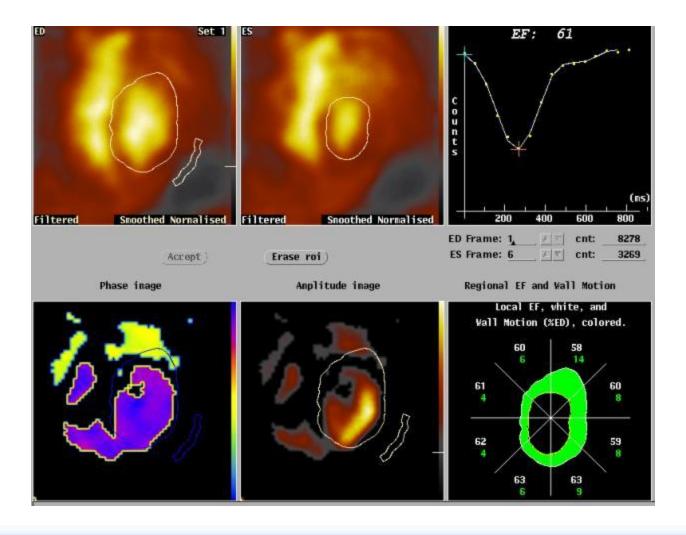
ФУНКЦИЯ ПОЧЕК (Tc99m-DMSA)



ИССЛЕДОВАНИЕ ПЕРВОГОПРОХОЖДЕНИЯ

- Внутривенно вводится высокая активность (400-800 МБк) Тс-99м болюсом, а затем производится краткосрочный сбор данных (4-20 кадров в секунду в течение 1 минуты). Таким образом демонстрируется функция миокарда с устранением влияния фоновой активности.
- Анализ первого прохождения позволяет оценить:
 - Визуализацию движения стенки
 - Расчет фракции выброса ЛЖ и ПЖ
 - Обнаружение наличия внутрисердечного шунтирования слева направо
 - Расчет сердечного выброса
 - Расчет объема желудочка
 - Расчет времени транзита


ИЗМЕРЕНИЕ ВНУТРИСЕРДЕЧНОГОвыБРОСА

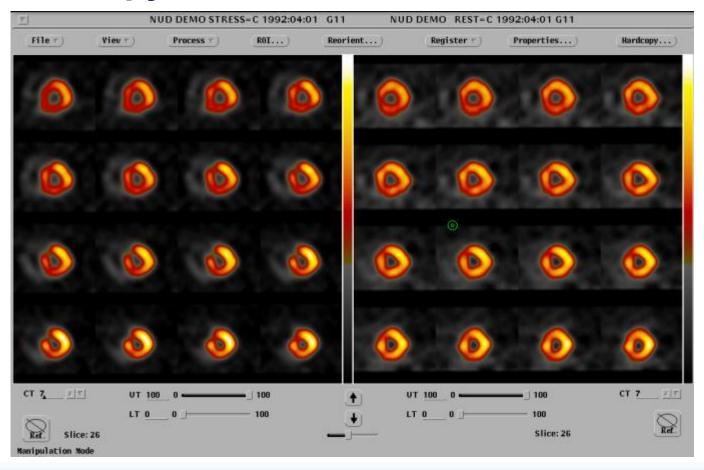

РАДИОИЗОТОПНАЯ ВЕНТРИКУЛОГРАФИЯ

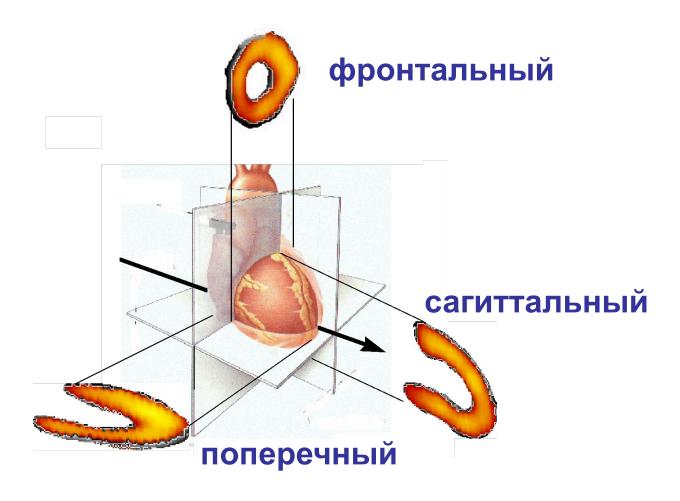
• Путем маркировки красных кровяных клеток (Тс99m), а затем проведения ЭКГ-синхронизированного динамического сканирования и измерения изменений скорости счета, производится измерение объема крови ЛЖ и ПЖ. Анализ движения стенки желудочка, систолической / диастолической функций, и фракции выброса, используется для оценки коронарной недостаточности, стратификации риска, и контроле кардиотоксичности в химиотерапии

• Внутривенное введение 600-800 МБк Тс99m, сканирование спустя 10-15 минут

Радиоизотопная вентрикулография

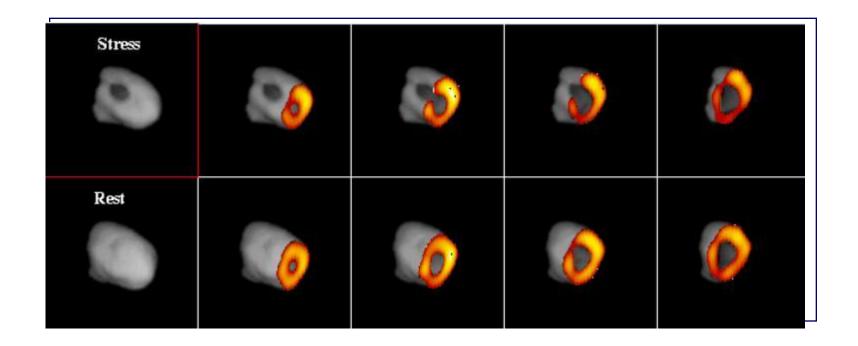
ПЕРФУЗИЯ МИОКАРДА


- Накопление ²⁰¹ТІ в миокарде зависит от кровотока и клеточного метаболизма, следовательно, оно отражает регионарную перфузию и жизнеспособность сердечной мышцы
- Оценка пациента с предполагаемой или установленной коронарной недостаточностью основывается на интерпретации изображения или количественном анализе реконструированных томографических срезов, который также дает информацию о региональной перфузии.
- Исследование проводится под нагрузкой и в состоянии покоя
- Риское 43 Тель Томографическое 43


ПЕРФУЗИЯ МИОКАРДА

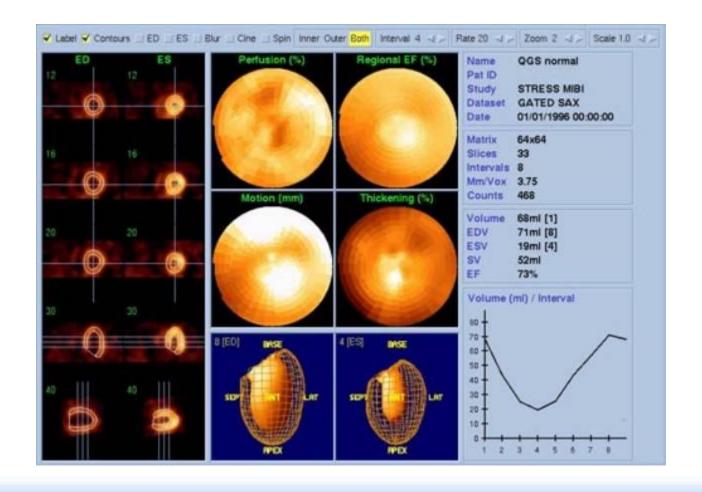
Нагрузка

Покой

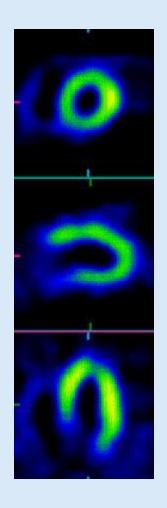


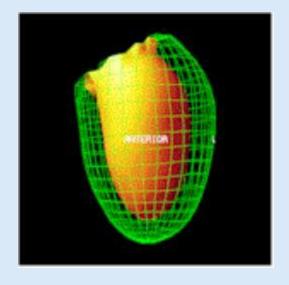
ТОМОГРАФИЧЕСКИЕ СРЕЗЫ

ПЕРФУЗИЯ МИОКАРДА


ПЕРФУЗИЯ МИОКАРДА

- Физические свойства 99mTc-МИБИ или 99mTc-Tetrofosmin позволяют проводить оценку перфузии и функции миокарда, путем выполнения ЭКГ-синхронизированных ОФЭКТ исследований перфузии, начиная с первого прохождения. Состояние пациента с установленной или с подозреваемой коронарной недостаточностью оценивается исходя из количественного анализа и оценке регионарной перфузии коронарной артерии, восстановленной из множества реконструированных томографических срезов.
- Внутривенное введение 800-1000 МБк. ЭКГ- синхронизированное томографическое исследование





ЭКГ-синхронизированное исследование перфузии миокарда

ЭКГ-синхронизированная ОФЭКТ

ПЭТ

Позитронно-эмиссионная томография

АННИГИЛЯЦИЯ

РАДИОНУКЛИДЫ

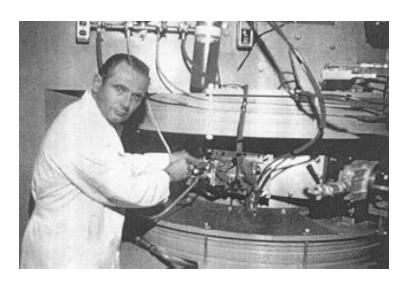
Радионуклид Время Энергия позитрона полураспада (средняя)

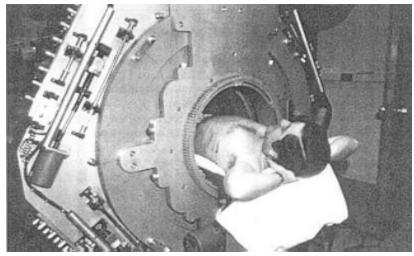
С-11 20.4 мин 0.39 МэВ

N-13 10 мин 0.50 МэВ

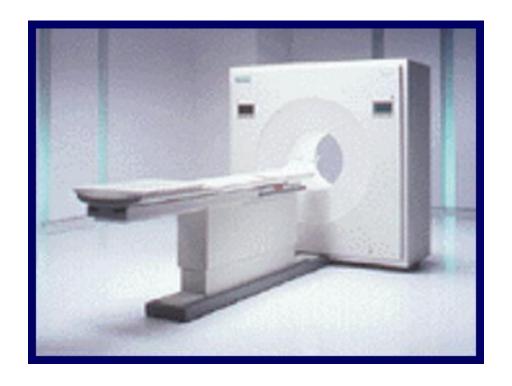
О-15 2.2 мин 0.72 МэВ

F-18 110 мин 0.25 МэВ


Cu-62 9.2 мин 1.3 МэВ

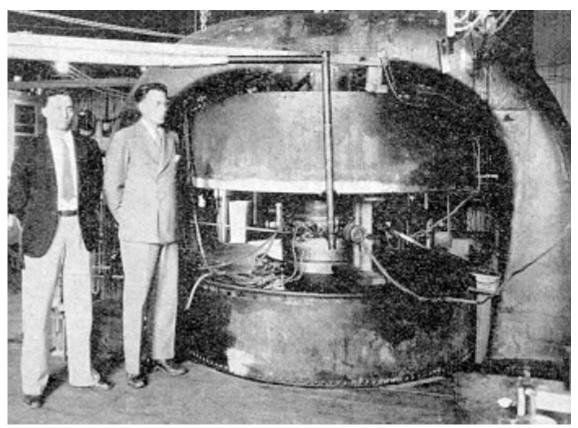

Ga-68 68.3 мин 0.83 МэВ

Rb-82 1.25 мин 1.5 МэВ

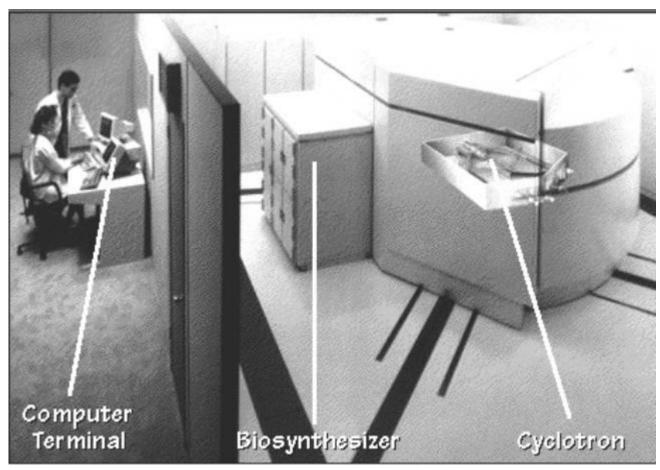

ПЕРВООТКРЫВАТЕЛИ

Мишель Тер-Погосян готовит радиофармпрепарат для обследования Генриха Вагнера младшего с использованием одного из первых ПЭТ-томографов (1975).

ПЭТ-установка



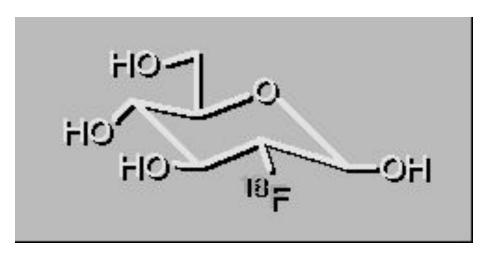
ПЭТ С ГАММА-КАМЕРОЙ

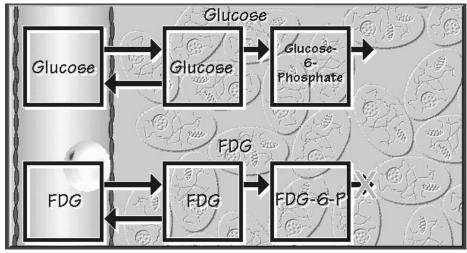


ЦИКЛОТРОН

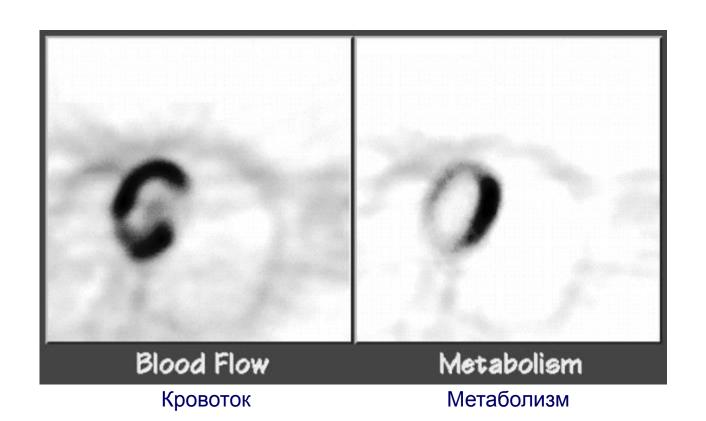
Стэнли Ливингстон и Эрнест Лоуренс с их 8 МэВ циклотроном (1935)

ЦИКЛОТРОНЫ В БОЛЬНИЦАХ




Компьютерный терминал Биосинтезатор

Циклотрон

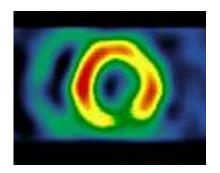


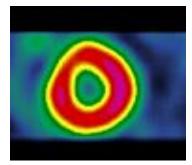
F18-ФДГ (F18-FDG)

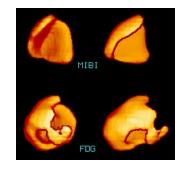
ФДГ В КАРДИОЛОГИИ

ФДГ В ОНКОЛОГИИ

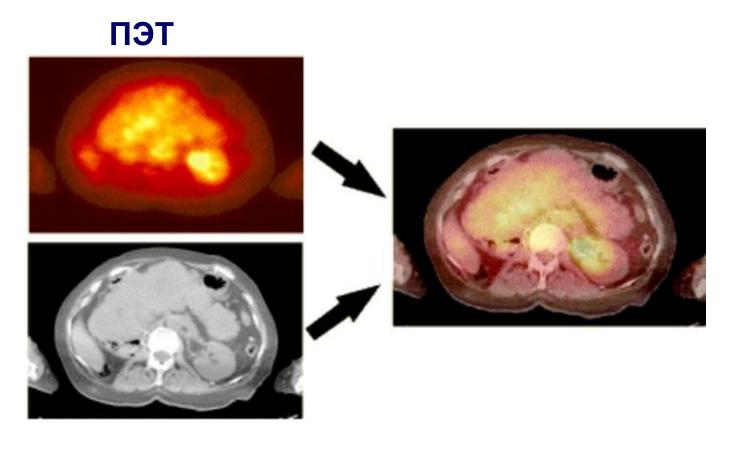
ФДГ В НЕВРОЛОГИИ




Болезнь Альцгеймера

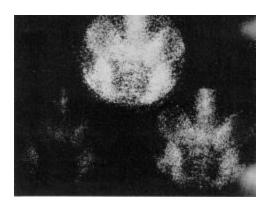

Норма

БУДУЩЕЕ Методы диагностики


- •Новые радиофармпрепараты на основе позитронных излучателей.
- •Радиофармпрепараты с высокой специфичностью.
- •Более продвинутое программное обеспечение, которое позволит улучшить чувствительность и специфичность исследований.

Совмещенная ПЭТ-КТ визуализация

KT


БУДУЩЕЕ приборы

- 3
 - Улучшение характеристик гамма-камеры
 - Улучшение обнаружения позитронных излучателей
 - Более изощренные методы для реконструкции и коррекции томографических исследований
 - Улучшенные электронные системы отчетности.

ЯДЕРНАЯ МЕДИЦИНА - НЕЯСНАЯ МЕДИЦИНА?

Нет! Ядерная медицина является эффективным диагностическим и терапевтическим инструментом и необходима с медицинской точки зрения.

