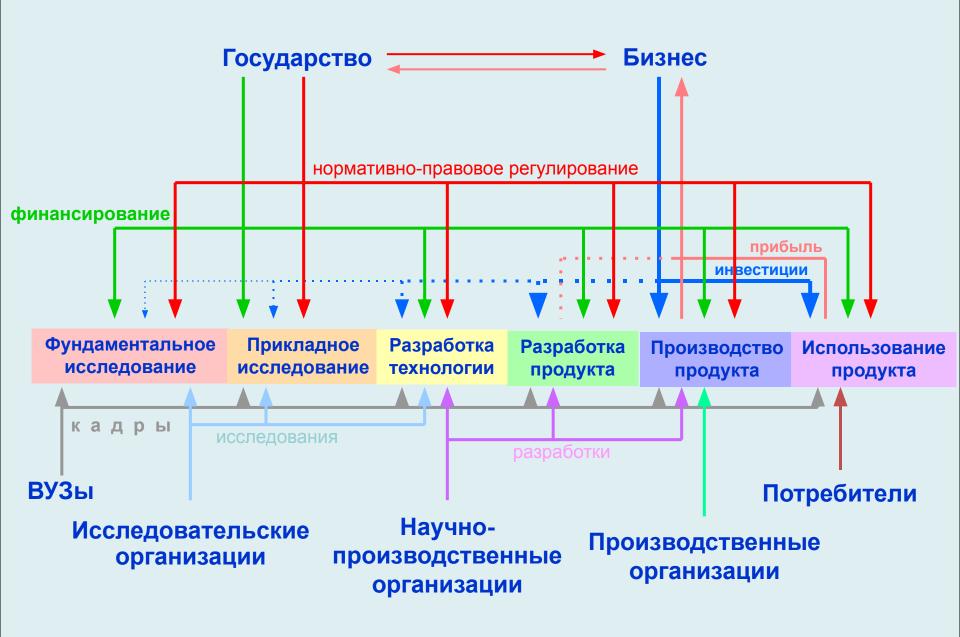


Технологическая платформа «МЕДИЦИНА БУДУЩЕГО»

«Перспективы развития медицинских технологий и роль Технологических платформ в доведении разработок от стадии фундаментального исследования до стадии внедрения в практическое здравоохранение.»

Стамбольский Дмитрий Викторович Врач-биохимик

В.н.с. Лаборатории генных и клеточных технологий Факультета фундаментальной медицины МГУ имени М.В.Ломоносова


В.н.с. Лаборатории молекулярной эндокринологии НИИ экспериментальной кардиологии Российского кардиологического НПК

Старший преподаватель кафедры биохимии Российского научно-исследовательского медицинского университета им. Н.И.Пирогова

МЕДИЦИНСКИЕ РАЗРАБОТКИ МОГУТ БЫТЬ ПРОДУКТИВНЫМИ ТОЛЬКО ПРИ ИСПОЛЬЗОВАНИИ КОМПЛЕКСНОГО МУЛЬТИДИСЦИПЛИНАРНОГО ПОДХОДА

Существующая система взаимодействий не обеспечивает непрерывность разработки

ВЗГЛЯД БИЗНЕСА НА УЧАСТИЕ В РАБОТЕ ТЕХНОЛОГИЧЕСКИХ ПЛАТФОРМ

Алексей КОНОВ, вице-президент компании «Биопроцесс», управляющий директор фонда «Биопроцесс Кэпитал» лауреат премии «Финанс 2011» в номинации «Венчурный капиталист года»

из выступления на КС ТП «Постгеномные и клеточные технологии в биологии и медицине» 29 октября 2010 года:

«... Фонд «Биопроцесс Кэпитал» инвестирует в высокие технологии. Капитализация фонда порядка 3,5 млрд. рублей...

чего мы ждем от технологических платформ?

...может быть, мы бы начали с того, что ... **определили ... тенденции** – или, если пользоваться модным словом, «тренды» **глобального развития в мире**. Мы пытались бы выяснить, что из этого есть у нас: а) передового, б) в среднем состоянии, в) чего у нас нет...

вторая задачу, которую я поставил бы перед платформой – то передовое, что есть, нужно поддержать всячески, через различные программы...

... **предложение для ... органов власти** ... – **чтобы ... давалась возможность работать** спокойно, не боясь, что назавтра к тебе придёт Счётная палата, а следом за ней – Прокуратура. ...

по программе «Живые системы» у нас 100 % успеха по всем проектам? Причём ни одного инновационного лекарства на рынке нет! Потому что если у тебя будет неуспех, сначала к тебе явится внутренний аудит, потом Счётная Палата, а потом Прокуратура...

последнее – помощь в формировании и упаковке тех лучших компетенций в конкретные проекты, которые мы, как бизнес, подхватим, и действительно поможем из них вырастить классные небольшие компании... до сих пор в России нет ни одной большой компании. Самая большая российская компания «Фармстандарт» - среднее предприятие, по мировым меркам даже малое. Здесь нет рынка ... Надо создавать рынок.

Если вот эти предложения как-то в платформу попадут – тогда, наверное, мы будем готовы войти.»

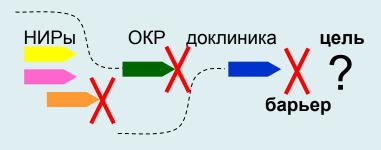
Зарубежный опыт прогнозирования

Питер Шварц, футурист автор книги «The Art of the Long View»

Сценарное прогнозирование 1. Учет:

- социальных ожиданий
- технологических предпосылок
- экономических факторов
- политических факторов
- факторов среды

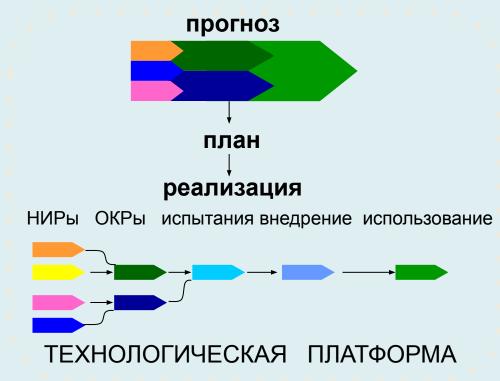
2. Формулировка нескольких сценариев-прогнозов:


- очень хороший
- хороший
- плохой

3. Выбор сценария Заказчиком

Реализация программ исследований и разработок

инициативные разработки


- формирование тематики (что я смогу сделать за такие деньги в такой срок?) конкурс по ФЗ 94 (кто сделает то что я придумал лучше, быстрее и дешевле?)
- не обеспечивают непрерывность разработки результаты часто невостребованы
- недостаточные сроки, финансирование и победы по демпингу не гарантируют высокий уровень разработки

лоскутное одеяло

плановая реализация программы

- определение приоритетов развития: реализация социально-, технологогически-, экономически-, и политически- подкрепленных ожиданий
- обеспечение преемственности реализация проектов полного цикла
- осуществление междисциплинарной и межведомственной координации
- устранение препятствующих факторов

ФЕДЕРАЛЬНЫЙ ПОРТАЛ PROTOWN.RU

Прорывные технологии и перспективные инновации для России Прорывные технологии и перспективные инновации для России, способные внести существенный вклад в решение важнейших социальных проблем

Модернизация Здравоохранения Российской Федерации

оригинальные инновационные технологии

инновационные биомедицинские технологии, включая клеточные и генно-инженерные технологии, тканевую инженерию, молекулярную диагностику, позволяющие развивать:

регенеративную медицину

активация восстановительных процессов в органах и тканях человека, воссоздание собственных тканей и органов из отдельных клеток с целью трансплан-тации наращивания кожных покровов и костной ткани

индивидуальную медицину

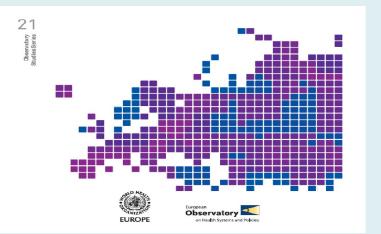
молекулярная диагностика индивидуальных особенностей организма, основанных на использовании постгеномных технологий, позволяющих определять индивидуальные предрасположенности к развитию заболеваний, давать оценку функциональному резерву организма, индивидуально оптимизировать фармакотерапию

импортозамещение или воспроизведение мировых достижений

разработка и производство **лекарствен- ных средств** на основе биотехнологий и технологий химического синтеза с использованием виртуального моделирования молекул с заданными свойствами

разработка и производство импортозамещающего и инновационного **медицинского оборудования** и **изделий медицинского назначения**

атомные и ядерные медицинские технологии для ранней диагностики и лечения широкого круга заболеваний



Implementing Health Financing Reform

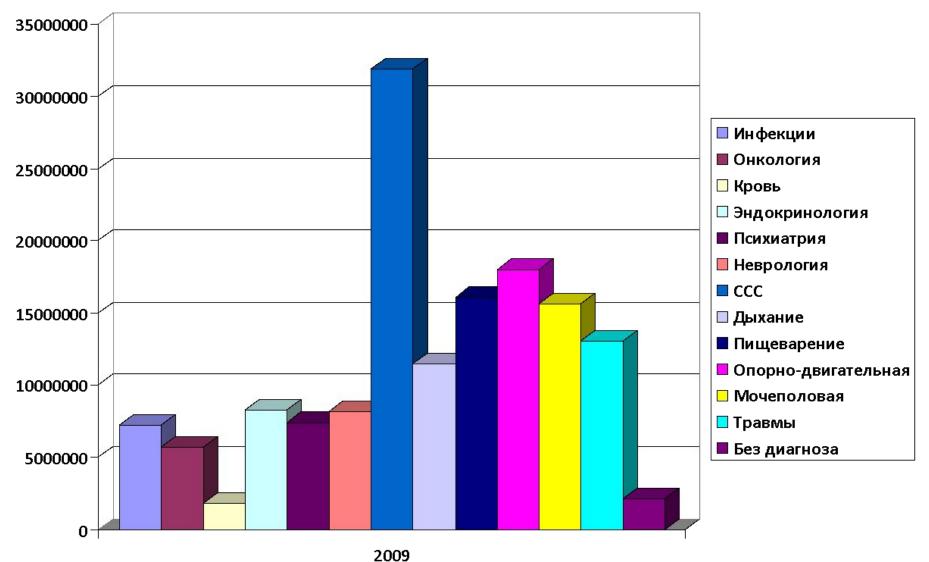
Lessons from countries in transition

Edited by Joseph Kutzin Cheryl Cashin Melitta Jakab

год	% охваченного населения	% гарантирован- ных услуг	% цены услуг покрываемый государством
1990	100	80	80
2007	100	60	65
2020	100	70	60

Davis 2010 (Concept from WHO 2008)

Расходы федерального бюджета (млрд. руб.)


	20	12	2013		2014	
	проект	в % к предыду- щему году	проект	в % к предыду- щему году	проект	в % к предыду- щему году
ВСЕГО	12 656	113,8	13 730	108,5	14 582	106,2
Оборона	1 853,3	121,8	2 329,4	125,7	2 737,4	117,5
Здравоохранение	551,1	117,2	503,3	91,3	461,8	91,8
Социальная политика	3 895,9	121,5	4 155,3	106,7	4 163,6	100,2
Межбюджетные трансферты	553,9	91,9	503,0	90,8	494,7	98,3

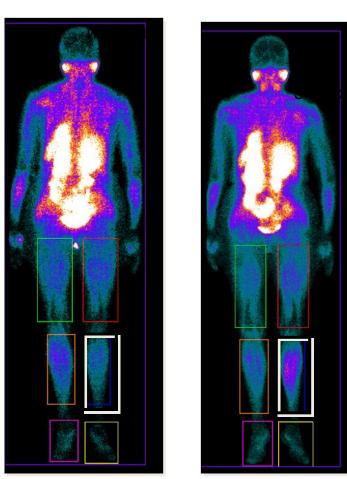
Из презентации С.И. КОЛЕСНИКОВА Зам. председателя комитета по охране здоровья Государственной Думы РФ, ноябрь 2011 г.

ДИНАМИКА ОБЩЕЙ ЗАБОЛЕВАЕМОСТИ И СМЕРТНОСТИ ПО РОССИЙСКОЙ ФЕДЕРАЦИИ

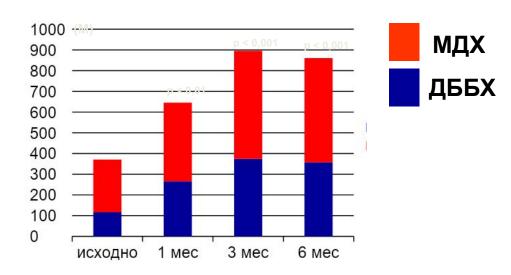
ЗАБОЛЕВАЕМОСТЬ НАСЕЛЕНИЯ В 2009 ГОДУ

Федеральный закон Российской Федерации от 21 ноября 2011 г. N 323-Ф3

"Об основах охраны здоровья граждан в Российской Федерации"

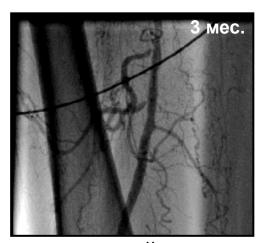

Статья 43. **Медицинская помощь гражданам, страдающим социально значимыми заболеваниями, и гражданам, страдающим заболеваниями, представляющими опасность для окружающих**

2. Перечень социально значимых заболеваний и перечень заболеваний, представляющих опасность для окружающих, утверждаются Правительством Российской Федерации исходя из высокого уровня первичной инвалидности и смертности населения, снижения продолжительности жизни заболевших.

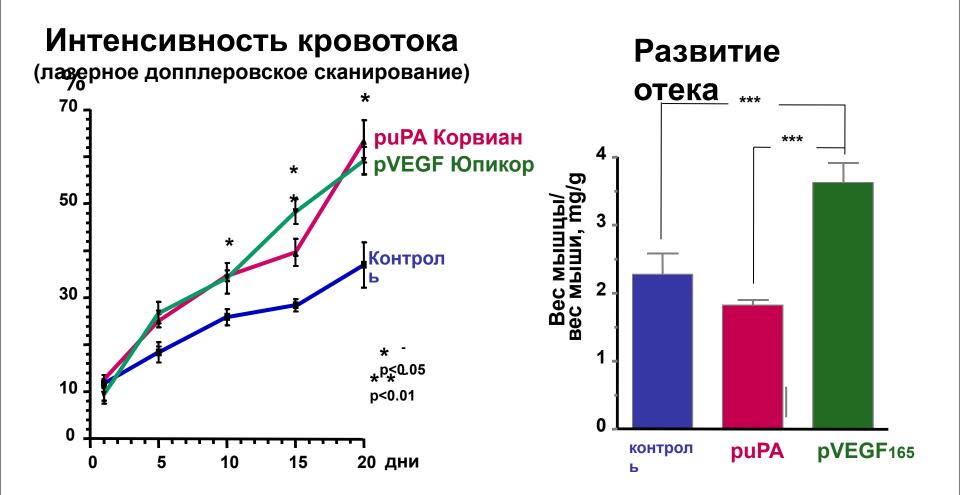

Статья 34. **Специализированная, в том числе высокотехнологичная, медицинская помощь**

3. Высокотехнологичная медицинская помощь является частью специализированной медицинской помощи и включает в себя применение новых сложных и (или) уникальных методов лечения, а также ресурсоемких методов лечения с научно доказанной эффективностью, в том числе клеточных технологий, роботизированной техники, информационных технологий и методов генной инженерии, разработанных на основе достижений медицинской науки и смежных отраслей науки и техники.

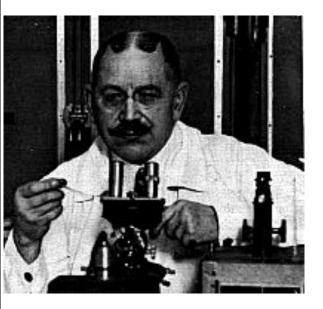
Клинические испытания (фаза IIa) Корвиана (pVEGF165) у неоперабельных больных с ишемией нижних конечностей (ФГУ РКНПК Росмедтехнологий)

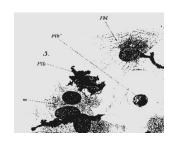


Улучшение перфузии (сцинтиграфиях с 99mTc-MIBI)

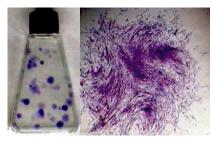

Увеличение максимальной и безболевой дистанции ходьбы

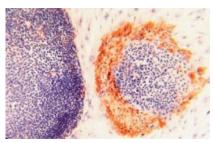
Увеличение коллатеральной сети

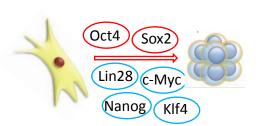

Введение гена урокиназы стимулирует восстановление кровотока и не вызывает развитие отека в ишемизированной конечности мыши


Traktuev et al., Mol Ther. 2007;15(11):1939-46

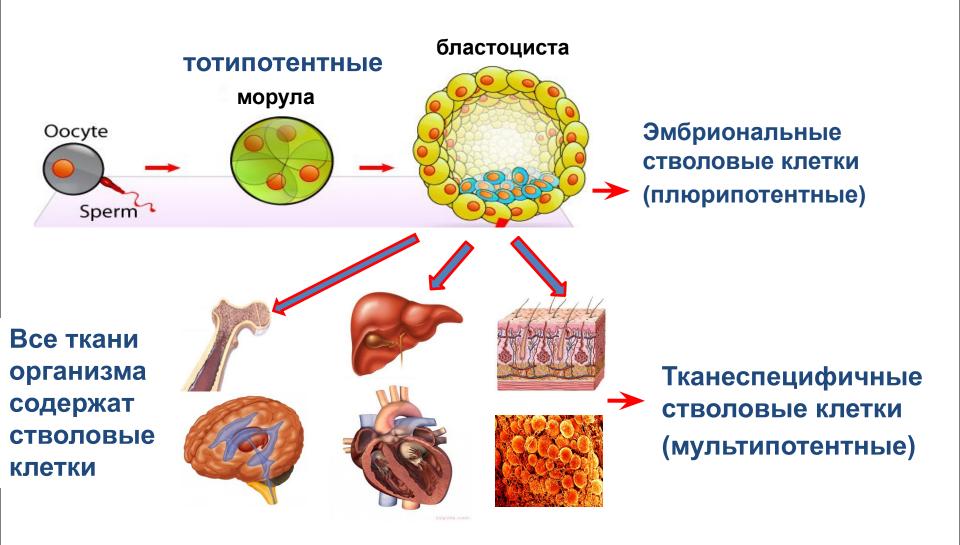
История открытия стволовых клеток


Стволовые клетки открыты в 1909 году


Александр Александрович Максимов (1874 – 1928)


1909 – гемопоэтические стволовые клетки *Maximow A.A. Folia Haematologica. 1909. 8: 125—134.*

1968 — мезенхимальные стволовые клетки Friedenstein A.J. et al. Transplantation. 1968. 6 (2): 230–47.



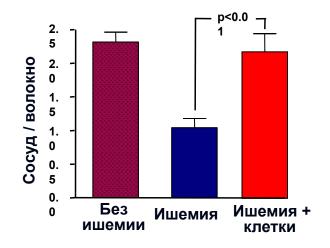
1998 – эмбриональные стволовые клетки человека *Thomson J.A. et al. Science.* 1998. 282: 1145-1147.

2006 – индуцированные плюрипотентные клетки *Takahashi K, Yamanaka S. Cell.* 2006. 126(4):663-76.

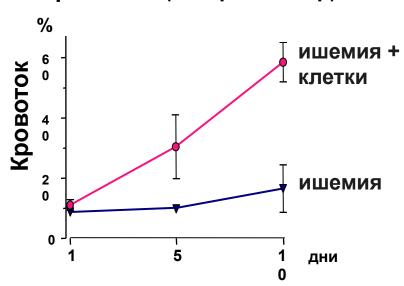
Стволовые клетки – это клетки, способные как к самообновлению посредством деления, так и к дифференцировке в специализированные клетки

Введение мезенхимальных стволовых клеток стимулирует восстановление кровотока

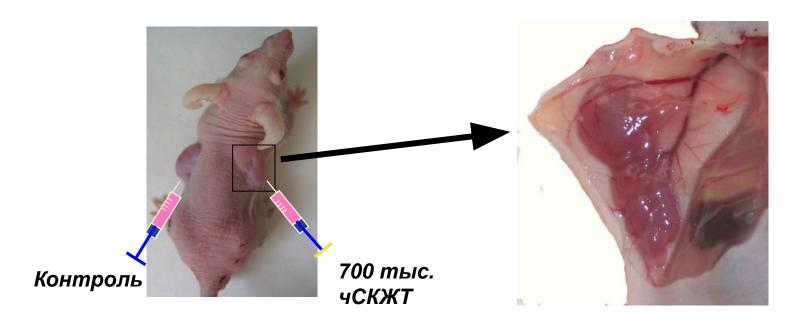
Конечность мыши при экспериментальной ишемии

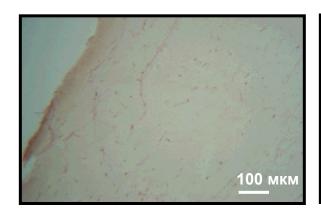


без клеток

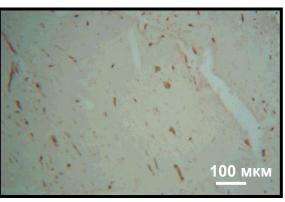


введены клетки

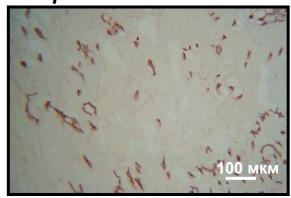

Количество сосудов



Кровоток (лазер-допплер)



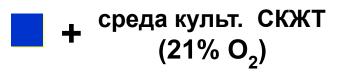
РАЗВИТИЕ СОСУДИСТОЙ СЕТИ МЫШИ ПОД ВЛИЯНИЕМ СТВОЛОВЫХ КЛЕТОК ЧЕЛОВЕКА

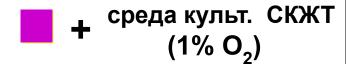


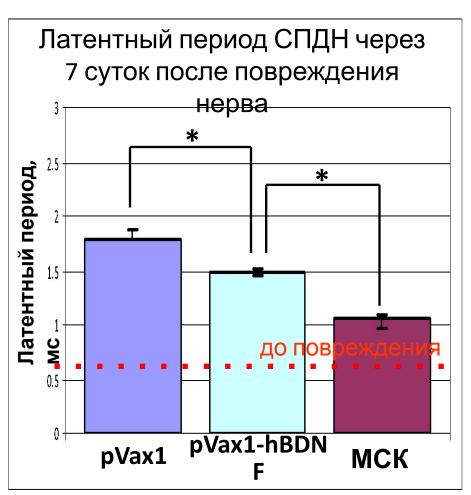
Матригель

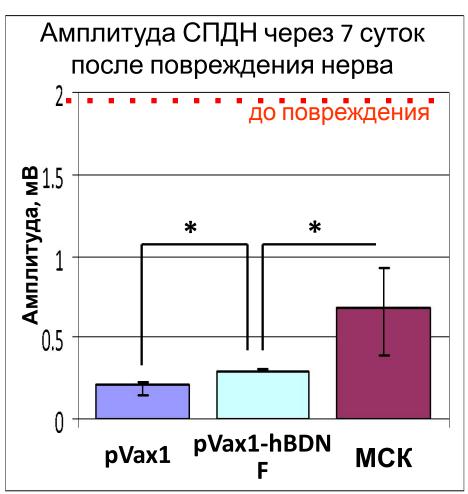
Матригель+bFGF 50нг/мл

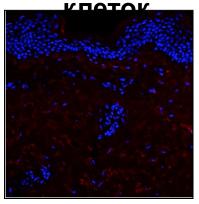
Окраска на CD31 мыши


М. + чСКЖТ гипокс.


Стимулирующее влияние среды культивирования чСКЖТ на выживание и пролиферацию микрососудистых эндотелиальных клеток




контр. среда ЕВМ-2


восстановление функции периферического нерва при использовании генной и клеточной терапии

(*-данные представлены в виде медианы и процентилей: 25% и 75%; n=18; p<0.05)

Кожа до введения

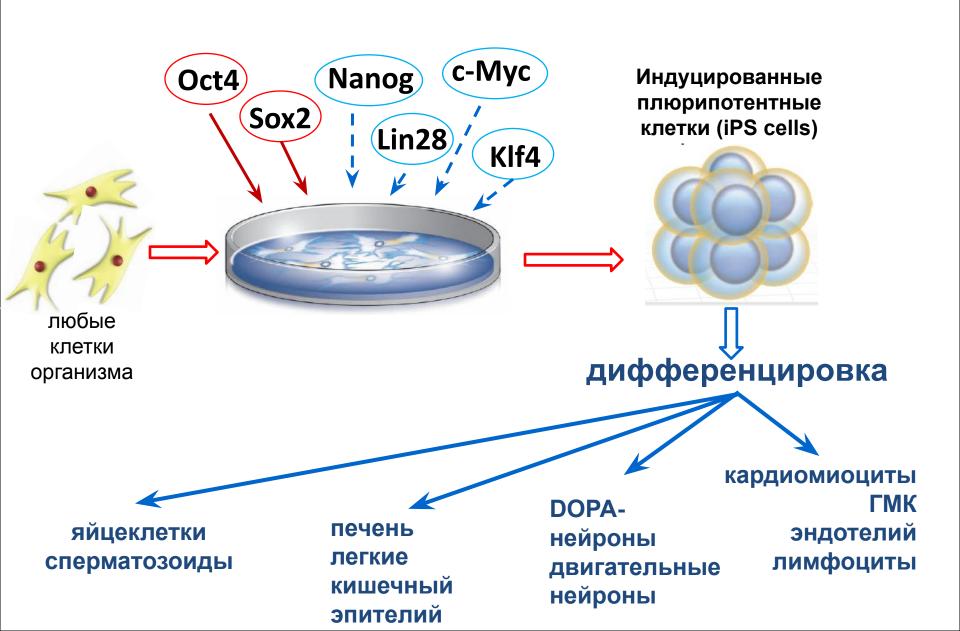
Мало эластина

Стволовые клетки дермы восстанавливают эластичность кожи

Дермальные эквиваленты кожи восстанавливают кожный покров

После

Увеличение эластина



В год 8000 пациентов с фатальными ожогами

«Новая кожа» для ожоговых больных

Индуцированные плюрипотентные клетки способны дифференцироваться в различные типы клеток

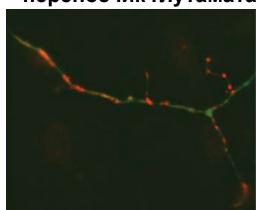
ПРЕВРАЩЕНИЕ ФИБРОБЛАСТОВ В НЕЙРОНЫ

фибробласты из хвоста мыши

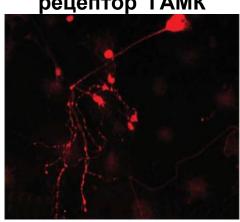
через 13 дней после введения в клетки генов Brn2, Myt1l, Zic1, Olig2 и Ascl1

Происходит экспрессия нейронального маркера МАР2

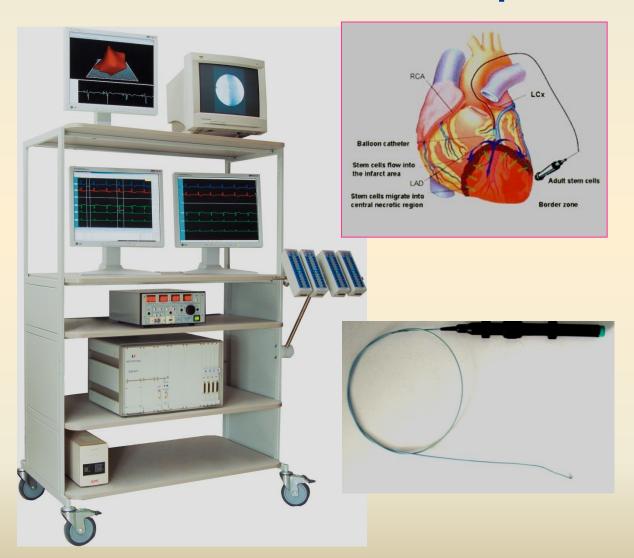
регистрируются на 85% клеток 20 mV 200 ms -65 mV +160 pA -50 pA


потенциалы действия

через 21 день клетки экспрессируют


синапсин

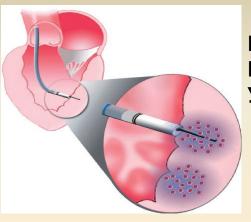
переносчик глутамата



рецептор ГАМК

T. Vierbuchen et al., Nature, 2010

Прототип установки для эндокардиальной доставки стволовых клеток в поврежденный миокард



Возможности создаваемой установки:

- Отображение позиции электродов в реальном времени;
- Создание трехмерной анатомической модели сердца;
- Визуализация расположения зон некроза в миокарде;
- Визуализация расположения зон введения стволовых клеток;
- Компьютерная визуализация распространения автоволновых процессов в миокарде.

клинические испытания устройства для трансэндокардиальной

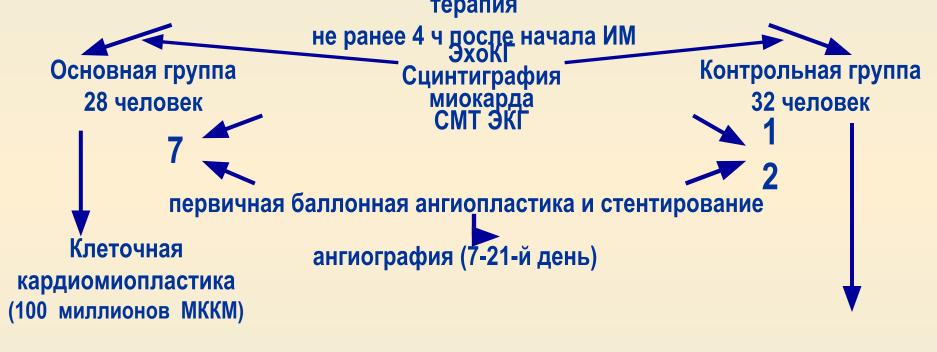
доставки клеточного материала

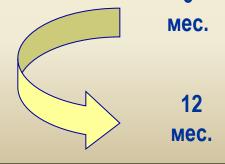
Исследование одобрено этическим комитетом НИИ кардиологии СО РАМН и Ученым советом НИИ кардиологии СО РАМН. Мононуклеарные клетки из костного мозга пациента Суспензия клеток в гепаринизированном фосфатносолевом физиологическом растворе 0,1 М, рН 7,2-7,4

Электромеханическое картирование левого желудочка выполнялось с помощью модифицированного аппаратно-программного комплекса Элкарт-Навигатор, Электропульс, Томск. Использовался катетер с иглой NOGAStar

Испытуемые - 5 больных мужчин (средний возраст 52,2±5,3 года). 3-сосудистое поражение венечного русла, требовавшее АКШ. ИМ в анамнезе.

Каждому пациенту по 15 инъекций не более 100 мкл клеточной взвеси в каждой по 1-2x10⁵ аутологичных мононуклеаров


Ограниченные клинические испытания свидетельствуют о том, что эндокардиальное введение СККМ осуществленное с использованием разработанной системы «Элкарт Навигатор» безопасно, и эффективно контролируется изменением электрофизиологических параметров в зонах воздействия.


Документирована эффективная имплантация стволовых клеток. После процедуры уменьшилось количество областей с замедленным проведением, увеличилась амплитуда потенциалов в перирубцовой зоне.

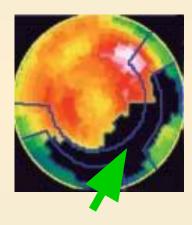
Однако, рубцовые области не изменили своих характеристик.

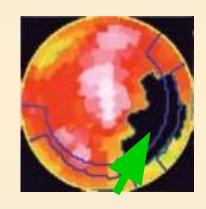
Исследование открытое, рандомизированное контролируемое методом параллельных групп

Сравнения
Острый первичный трансмуральный ИМ
Неэффективная или эффективная реперфузионная терапия

Клинический осмотр ЭхоКГ

Повторное обследование ЭхоКГ, СМТ ЭКГ Сцинтиграфия миокарда

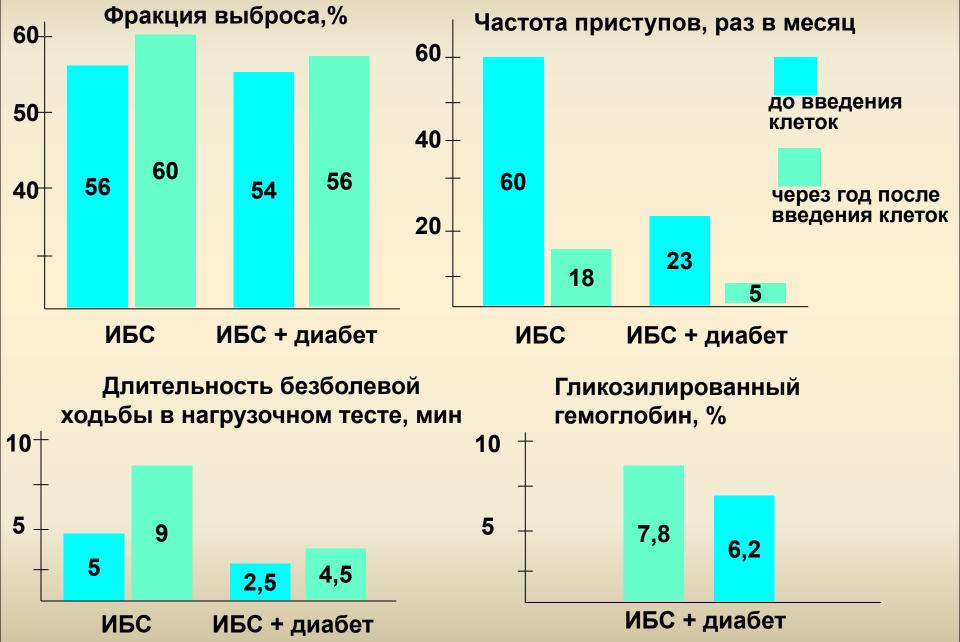



Уменьшение зоны ишемии миокарда после введения стволовых клеток во время АКШ

Томография с изотопом 99Тс проекции «бычий глаз» и планарный срез

до интраоперационного введения клеток

6 месяцев после операции



ВНУТРИВЕННОЕ ВВЕДЕНИЕ СТВОЛОВЫХ КЛЕТОК ПРЕДДИФЕРЕН-ЦИРОВАННЫХ В КАРДИОМИОЦИТАРНОМ НАПРАВЛЕНИИ ПРИ ИБС И ИБС, ОСЛОЖНЕННОЙ САХАРНЫМ ДИАБЕТОМ

В ограниченных клинических исследованиях приняло участие 352 пациентов с кардиологическими патологиями в трех медицинских центрах.

- 92 внутримиокардиальное введение во время АКШ
- 48 внутрикоронарное введение пни остром инфаркте миокарда
- 34 внутрикоронарное введение при хронической сердечной недостаточности
- 178 внутривенное введение при ИБС и ИБС, осложненной диабетом

Обобщенные результаты клинических исследований применения клеточных технологий:

- 1. Введение клеточных препаратов хорошо переносится пациентами
- 2. Применение клеточных препаратов не дает осложнений
- 3. Применение клеточных технологий <u>безопасно</u> новообразования, иммунные реакции и инфицирование не наблюдались
- 4. При применении клеточных технологий отмечается улучшение

сердечной функции

5. При применении клеточных технологий отмечается <u>улучшение качества</u> <u>жизни</u>

Десять самых продаваемых продуктов для регенеративной медицины, полученных с использованием клеточных технологий

Компания	Продукт	Тип продукта	Область применения	Продажи млн.USD	
Medtronic	Infuse	Факторы роста, матриксы	Кость	700	
LifeCell	Alloderm	Аллогенный безклеточный матрикс	Кожа	167,1	
Genzime	Carticel	На основе аутологичных клеток	Хрящ	88	
Striker	OP-1	Факторы роста, матриксы	Кость	80	
RTI	Spinal implants	Аллогенный безклеточный матрикс	Кость	41,1	
Organogenezis	Apligraf	Аллогенные неонатальные клетки, матрикс	Кожа	30	
Advanced Biohealing	Dermagraft	Аллогенные неонатальные стволовые клетки, матрикс	Кожа	20	
Integra Lifesciencis	Various	Аллогенный безклеточный матрикс	Кожа	20	
Osiris/ Nuvasive	Osteocell	Аллогенный матрикс с клетками	Кость	15,2	
Cytori	Celution	На основе аутологичных клеток	Мягкие ткани	10-12	

Технологическая платформа «Медицина будущего» 2011 г ФЦП «Исследования и разработки…» Конкурсы проведенные при участии ТП «Медицина будущего»

Мероприятие 1.2.

22 НИР

на общую сумму 82,78 млн. руб.

Мероприятие 2.2.

9 OKP

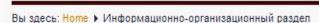
НИР : ОКР

2009 г 1 : 8

2010 г 2.2 – проектов не было

2011 г 1 : 3

- 4 по направлению «Приборы для диагностики и лечения»,
- 3 по направлению «Диагностические и лечебные системы на основе молекулярных и клеточных мишеней»
- 2 по направлению «Инновационные фармацевтические препараты» на общую сумму 2179,38 млн. руб. (в том числе за счет привлеченных средств 1057,58 млн. руб.). Мероприятие 2.7


1 проект в области материаловедения 150 млн.руб.+150 млн.руб.

Общее финансиро- вание разработок организаций членов ТП «Медицина будущего» по	Биокатали- тические, биосинтети- ческие и биосенсор- ные технологии	Биомеди- цинские и ветеринар- ные технологии	Геномные, протеомные и постгеном- ные технологии	Клеточные технологии	Технологии биоинже- нерии	Технологии снижения потерь от социально значимых заболеваний
направле- ниям 2011 год, тыс. руб.	399 600	1 279 800	301 860	185 510	1 424 520	410 000

http://www.tp-medfuture.ru/

Медицина будущего

Технологическая платформа

МЕНЮ

ГЛАВНАЯ

СТРАТЕГИЧЕСКАЯ ПРОГРАММА ИССЛЕДОВАНИЙ

ДОРОЖНЫЕ КАРТЫ

МЕЖДУНАРОДНОЕ СОТРУДНИЧЕСТВО

новости

КРУПНЫЕ ПРОЕКТЫ

ПРОГНОЗНЫЕ ИССЛЕДОВАНИЯ ТП

Информационно-организационный раздел

В данном разделе размещаются образцы документов, положения и другие информационные материалы для участников ТП «Медицина будущего»

- Меморандум ТП «Медицина будущего»
- Шаблон формы «Сведения об участнике ТП «Медицина будущего»
- Порядок вступления в ТП «Медицина будущего»
- Заявление о присоединении к Меморандуму