Центральные органы иммуногенеза:

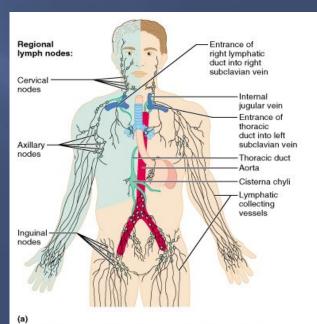
- тимус
- КОСТНЫЙ МОЗГ.

В костном мозге образуются предшественники Т и Влимфоцитов, а также созревают В-клетки.

В тимусе образуются и дифференцируются Т-лимфоциты.

Периферические органы иммунной системы:

- селезенка,
- лимфатические узлы,


- лимфоидная ткань ассоциированная со слизистыми оболочками

(MALT)

- MALT ЖКТ
- MALT респираторной системы
- MALТ мочеполовой системы

Функции:

- кроветворения,
- депо,
- защитная,
- элиминация.

Copyright © 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Закладка **TUMYCA** у человека происходит в конце первого месяца внутриутробного р азвития из эпителия глоточной кишки, в области главным образом III и IV пар жаберных карманов в виде тяжей многослойного эпителия.

<u>На7 неделе</u> развития в эпителиальной строме тимуса человека появляются первые лим фоциты.

На <u>8—11-й</u> неделе врастающая в эпителиальную закладку органа мезенхима с кровеносными сосудами подразделяет закладку тимуса на дольки. На <u>11—12-й неделе развития</u>

<u>эмбриона</u> человека происходит дифференцировка лимфоцитов, а на поверхности клеток появляются специфические рецепторы и антигены.

На <u>3-м месяце</u> происходит дифференцировка органа на мозговую и корковую части, они инфильтрируются лимфоцитами и первоначальная тип ичная эпителиальная структура зачатка становится трудноразличимой В строме мозгового вещества появляются своеобразные структуры — так называемые слоистые эпителиальные тельца (по имени автора – <u>тельца Гассаля).</u>

Образующиеся в результате митотического деления Т-лимфоциты мигрируют затем в закладки лимфатических узлов (в их т.н. тимусзависимые зоны) и другие периферические лимфоидные органы.

<u>В течение 3-5 мес</u> наблюдается дифференцировка стромальных клеток и появление разновидностей <u>Тлимфоцитов киллеров, супрессоров ихелперов, способных продуцировать лимфокины.</u>

<u>Формирование тимуса завершается к 6-му месяцу</u>. Эпителиоциты органа начинают секретировать гормоны, а вне тимуса появляются дифференцированные формы — Т-киллеры, Т-супрессоры, Т-хелперы.

В первые <u>2 недели</u> после рождения наблюдаются массовое выселение Тлимфоцитов из тимуса и резкое повышение активности вне тимусных лимфоцитов. К моменту рождения масса тимуса равна 10—15 г.

Закладка селезенки осуществляется в начале второго месяца эмбрионального развития в виде пронизанных сосудами скоплений клеток мезенхимы в дорсальной брыжейке. Из мезенхимы формируется ретикулярная ткань, последнюю заселяют стволовые клетки крови.

<u>З месяц эмбриогенеза</u> в селезенке дифференцируется периартериальная тимусзависимая зона,

5 <u>месяц</u> - формируются реактивные центры и краевые зоны фолликулов,

<u>6 месяц</u> - можно различить красную пульпу.

В это же время (с третьего по пятый месяц эмбриогенеза) в селезенке нарастают явления миелоидногогемопоэза, она выполняет функции универсального кроветворного органа.

Появление <u>лимфатических узлов</u>с конца <u>второго месяца</u> эмбрионального развития в виде зон локальных скоплений клеток мезенхимы вокруг лимфатических сосудов.

Из *внешнего слоя* мезенхимы формируются капсула и трабекулы, из внутреннего — ретикулярная строма узлов.

Выселения лимфобластов и лимфоцитов из костного мозга обеспечивает формирование <u>в конце</u> <u>4 месяца</u> эмбриогенеза мозговых тяжей и лимфатических фолликулов.

Немного позже заселяется *тимусзависимая паракортикальная зона* и лимфатические узлы обогащаются макрофагами.

<u>В конце 5 месяца</u> лимфатические узлы получают морфологические признаки, характерные для взрослого организма.

Свое формирование они завершают на протижении первых трех годов жизни ребенка. Реактивные центры в фолликулах появляются при иммунизации организма в процессе жизнедеятельности и становления его защитных функций.

Клеточная иммунная система начинает функционировать, уже ко II триместру, но окончательно лимфоцитарная система плода развивается и созревает в последнюю очередь.

К 8,5 неделям в тимусе эмбриона появляются коммитированные клетки Т-лимфоцитыпредшественники, а через неделю на их мембране уже имеются маркеры CD4 и CD8.

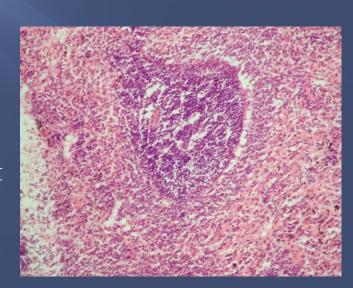
В процессе созревания Т-клетки проходят стадии двойных негативных клеток, располагающихся в подкапсульной зоне тимуса, не экспрессирующих CD4 и CD8 и составляющих предшественники основной части Т-лимфоцитов: двойные положительные клетки, экспрессирующие как CD4, так и CD8, а также имеющие низкий уровень Т-клеточного рецептора (TCR-CD3 комплекса). Эти клетки располагаются во внутренней кортикальной зоне и подвергаются положительной селекции на реаранжированые TCR, узнающие молекулы главного комплекса гистосовместимости (МНС), экспрессируемые тимическими стромальными клетками.

На 3-й стадии развития тимоциты располагаются в медуллярной зоне и в незначительном количестве во внутренней кортикальной зоне, экспрессируют либо CD4, либо CD8 и проходят отрицательную селекцию, при которой клетки, обладающие рецепторами к аутоантигенам, представленным на молекулах МНС, подвергаются апоптозу.

соотношения Т-лимфоцитов CD4/CD8 в пуповинной крови схожи с таковыми в периферической крови у взрослых так и у новорожденных.

В лимфатических узлах -

- кора В-зона,
- паракортикальная зона Т-зона;
- мозговое вещество Т-,лимфоциты и макрофаги.


<u>Основные иммунокомпетентные клетки</u>: Т лимфоциты, В-лимфоциты и макрофаги.

Функция Т-клеток:

- Опознать «свое» и «чужое», передать информацию В-клеткам.Передача информации осуществляется
- через макрофагальную систему.

Функция В-клеток:
• выработка антител (иммуноглобулинов).

При этом В-лимфоцит трансформируется в плазмобласт и плазмоцит (реакция бластной трансформации).

<u>Красная пульпа селезёнки</u> включает венозные синусы (sinus venulares) и селезёночные (пульпарные) тяжи (chordae splenicae) Бильроте (часть красной пульпы, расположенной между синусами).

В красной пульпе задерживаются моноциты, которые дифференцируются в Везкарофунила селезёнки

Включает в себя лимфатические узелки (фолликулы, мальпигиевы тельца) и периартериальные лимфатические влагалища (муфты)

Вдоль артерий пульпы в наружной оболочке их стенки формируются скопления лимфоцитов (ПАЛВ). В этих образованиях накапливаются Т-лимфоциты (*Т-зависимая зона*). Эти периартериальные зоны - <u>тимусзависимые зоны селезёнки</u>, в которых Т-лимфоциты проходят антигензависимую пролиферацию и дифференцировку.

На периферии периартериальных зон развиваются лимфатические узелки. Центральная часть узелка - происходит антигензависимая пролиферация и дифференцировка В-лимфоцитов. Данная часть узелка рассматривается как бурсазависимая зона, и называется <u>герминативным</u> (зародышевым) центром узелка. Специфическими элементами микроокружения этой зоны являются дендритные клетки.

Маргинальная зона На границе между белой и красной пульпой

накапливаются продуцирующие антитела плазматические клетки, которые образуются при дифференцировке В-лимфоцитов.

Иммунокомпетентные клетки - это клетки обеспечивающие выполнение функций иммунной системы, К ним относятся антигенпредставляющие клетки (АПК), Т- и В-лимфоциты и NK-клетки.

АПК относятся макрофаги, отростчатые (дендритные) клетки лимфатических узлов, селезёнки и других тканей, включая клетки Лангерганса эпидермиса, М-клетки лимфатических фолликулов пищеварительного тракта и других слизистых оболочек, дендритные эпителиальные клетки вилочковой железы.

Эти клетки захватывают, обрабатывают (процессируют) и представляют АГ на своей поверхности Т-лимфоцитам-хелперам.

Т-лимфоциты ответственны за так называемый клеточный иммунный ответ, а также помогают реагировать на АГ В-лимфоцитам при гуморальном иммунном ответе. Каждый Т-лимфоцит содержит Ід-подобный интегральный мембранный гликопротеин - TCR — T Cell Receptor- строго одной специфичности, т.е. взаимодействующий только с одним АГ. Т-клетки по экспрессии маркерных АГ CD подразделяют

- ♦ CD4+-лимфоциты подразделяют :
- на регуляторные (Th2-хелперы)
- эффекторные (Th1-хелперы).

Т-хелперы (от англ. help – «помогать») при взаимодействии с АПК специфически распознают АГ Th2 при взаимодействии с В-клетками индуцируютгуморальный иммунный ответ, Thl — при взаимодействии с цитотоксическими Т-лимфоцитами (ЦТЛ) — клеточный иммунный ответ, Тгэт (Т-эффекторы реакций гиперчувствительности замедленного типа) опосредуют реакции гиперчувствительности замедленного типа (ГЗТ).

- ◆ CD8+-лимфоциты. Субпопуляции Т-клеток, экспрессирующие мембранные молекулы CD8, также подразделяют на
- •регуляторные Т-супрессоры
- •эффекторные (ЦТЛ).

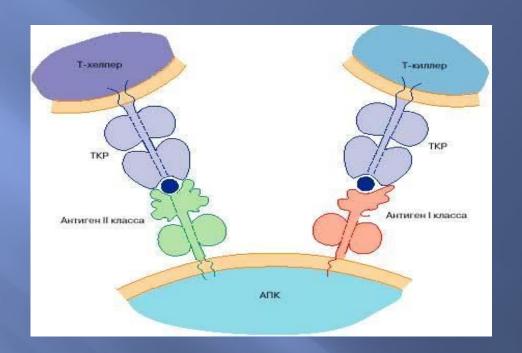
Т-супрессоры (от англ. suppress – «подавлять»), регулируют интенсивность иммунного ответа, подавляя активность CD4+-клеток.

<u>Цитотоксические Т-лимфоциты (ЦТЛ)</u> или <u>Т-киллеры</u> (от англ. кill – «убивать») лизируют клетки-мишени, несущие чужеродные АГ или видоизменённые собственные АГ — аутоантигены (например, клетки опухолей, трансплантатов, инфицированные вирусами; клетки, несущие поверхностные вирусные АГ).

В 1986 году предложена номенклатура дифференцировочных антигенов лейкоцитов человека. Это CD-номенклатура (cluster of differentiation – кластер дифференцировки). Она базируется на способности моноклональных антител реагировать с определенными дифференцировочными антигенами. CD-группы нумеруются. На сегодняшний день имеются моноклональные антитела к целому ряду дифференцировочных антигенов Т-лимфоцитов человека.

- CD2 обнаруживается на всех зрелых периферических Т-лимфоцитах, на большинстве тромбоцитов, а также на определенных популяциях клеток О-лимфоцитов (ни Т- ни В-лимфоциты).
- CD3 используется для идентификации зрелых Т-клеток.
- CD4. зрелые Т-лимфоциты, обладающие хелперной активностью и индукторы. Особое значение имеет то, что СД4 связывается с вирусом СПИДа, что приводит к проникновению вируса внутрь клеток этой субпопуляции.
- CD8_ Субпопуляция СД8+ Т-клеток включает цитотоксические и супрессорные Т-лимфоциты.

Человеческие лейкоцитарные антигены, или система тканевой совместимости человека (HLA, Human Leukocyte Antigens) — группа антигенов гистосовместимости главный комплекс гистосовместимости (далее МНС) у людей. Представлены более, чем 150 антигенами.


Молекулы главного комплекса гистосовместимости I класса (A, B, C) представляют пептиды из цитоплазмы на поверхности клетки .Чужеродные антигены привлекают Т-киллеры , которые уничтожают клетку-носитель антигена.

Молекулы этого класса присутствуют на поверхности всех типов клеток, Молекультов и Компое крефобобом естимости II класса (DP, DM, DOA, DOB, DQ, DR) представляют антигены из пространства вне клетки Тлимфоцитам Некоторые антигены стимулируют деление Т-хелперов, которые затем стимулируют В-клетки для производства антител к данному антигену. Молекулы этого класса находятся на поверхности антигенпредставляющих клеток: дендритных клеток, макрофагов, В-лимфоцитов.

Молекулы главного комплекса гистосовместимости III класса кодируют общинанны кымплементамбеук бытырирунчиную вжения органов после пересадки, могут защищать от рака или увеличивать его вероятность (если их количество снижено из-за частых инфекций). Они могут влиять на развитие аутоиммунных заболеваний (сахарного диабета Ітипа, целиакии)

Каждый организм обладает уникальным набором антигенов, свойственных только ему самому. Эти антигены кодируются группой генов, находящихся у человека на 6 хромосоме, и называются антигенами главного комплекса тканевой совместимости и обозначаются МНС-антигены (англ. Маjor histocompatibility complex).

- впервые были обнаружены на лейкоцитах и поэтому имеют другое название <u>HLA (Human leucocyte antigens).</u>
- относятся к гликопротеинам и содержатся на мембранах клеток организма, определяя его индивидуальные свойства и индуцируют трансплантационные реакции, за что они получили третье название трансплантационные антигены.
- играют обязательную роль в индукции иммунного ответа на любой антиген.

МНС-антигены I класса - находятся на поверхности практически всех клеток организма. Антигены I класса обеспечивают представление антигенов цитотоксическим CD8+-лимфоцитам, а распознавание этого антигена антигенпредставляющим клеткам другого организма при трансплантации приводит к развитию трансплантационного иммунитета.

МНС-антигены II класса - находятся преимущественно на антигенпредставляющих клетках - дендритных, макрофагах, Влимфоцитах. Основная роль в иммуногенезе антигенов II класса - участие в представлении чужеродных антигенов Т-хелперным

1

<u>Гуморальный иммунитет</u> начинает формироваться примерно тогда же, когда и клеточный. Пре В-лимфоциты появляются в печени плода через 8 недель от начала гестации и к <u>10 неделе</u> экспрессируют поверхностные иммуноглобулины.

К <u>18 неделе</u> абсолютное число циркулирующих и селезеночных В-лимфоцитов приближается к взрослому уровню.

В-лимфоциты плода имеют несколько иной фенотип, чем В-клетки иммунной системы взрослого. Первыми В-лимфоцитами являются CD5+ В1-клетки, располагающиеся преимущественно в сальнике, а затем в кишечнике.

81-лимфоциты плода выделяют IgM в ответ на различные вещества бактериального происхождения.

- не обладают антигенспецифичностью и могут реагировать с большим спектром белков, включая аутологичные ткани.
- составляют раннюю неспецифическую защиту плода. иммунитета связана с незрелостью В-лимфоцитов.

Уровни иммуноглобулинов IgG, IgM, IgA, IgE и их субклассов достигают значений уровней взрослого в течении всего детского возраста.

В-лимфоциты плода могут синтезировать IgA и IgG, что может быть обусловлено антиидиотипическим ответом на поступающие через плаценту материнские антитела.

Новорожденные не находящиеся на грудном вскармливании относительно дефицитны по IgA и секреторному IgA.

В-лимфоциты состоят из нескольких субпопуляций:

- 1) <u>В₁-лимфоциты</u> предшественники плазмоцитов, синтезирующие антитела JgM без взаимодействия с Т-лимфоцитами;
- 2) <u>В₂-лимфоциты</u> предшественники плазмоцитов, синтезирующие иммуноглобулины всех классов в ответ на взаимодействие с Т-хелперами. Эти клетки обеспечивают гуморальный иммунитет на антигены, распознаваемые Т-хелперами;
- 3) <u>В₃-лимфоциты (К-клетки)</u>, или В-киллеры, убивают клетки-антигены, покрытые антителами;
- 4) <u>В-супрессоры</u> тормозят функцию Т-хелперов, а В-лимфоциты памяти, сохраняя и передавая память об антигенах, стимулируют синтез определенных иммуноглобулинов при повторной встрече с антигеном.

Особенностью В-лимфоцитов является то, что они специализируются на конкретных антигенах. При реакции В-лимфоцитов с антигеном, встреченным впервые, образуются плазмоциты, выделяющие антитела именно против этого антигена. Образуется клон В-лимфоцитов, ответственный за реакцию с этим конкретным антигеном. При повторной реакции размножаются и синтезируют антитела только В-лимфоциты, а точнее – плазмоциты, направленные против этого антигена

Основная функция В-клеток -

- эффекторное участие в гуморальных иммунных реакциях,
- дифференциация в результате антигенной стимуляции в плазматические клетки,
- продуцирующие антитела.

Образование В-клеток у плода происходит в печени, в дальнейшем - в костном мозге.

Процесс созревания В-клеток осуществляется в две стадии:

Антиген-независимая фаза. В-лимфоцит в процессе созревания проходит стадию <u>пре-В-лимфоцита</u> - активно пролиферирующей клетки (т.е. IgM).

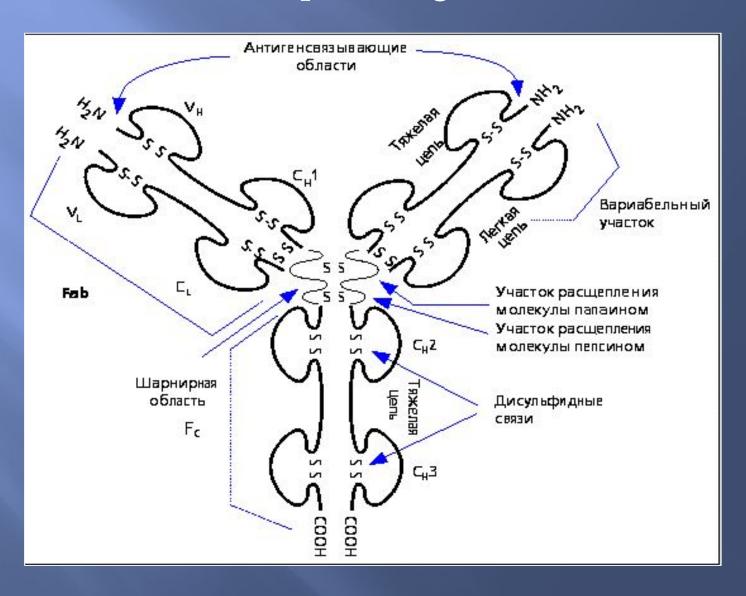
Следующая стадия - <u>незрелый В-лимфоцит</u> характеризуется появлением мембранного (рецепторного) IgM на поверхности. Конечная стадия антигеннезависимой дифференцировки - <u>образование зрелого В-лимфоцита</u>, который может иметь два мембранных рецептора с одинаковой антигенной специфичностью (изотипа) — IgM и IgD.

Покидают костный мозг <u>и заселяют селезенку, лимфоузлы и другие</u> <u>скопления лимфоидной ткани</u>, где их развитие задерживается до встречи со "своим" антигеном, т.е. до осуществления антиген-

Антиген-зависимая дифференцировка включает активацию, пролиферацию и дифференцировку В-клеток в плазматические клетки и В-клетки памяти.

<u>Активация</u> осуществляется различными путями, что зависит от свойств антигенов и участия других клеток (макрофагов, Т-хелперов).

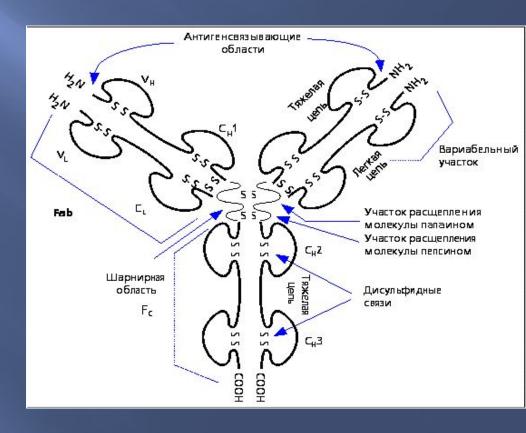
Большинство антигенов, индуцирующих синтез антител, для индукции иммунного ответа требуют участия Т-клеток - *тимус-зависимые антигены*. *Тимус-независимые антигены* (ЛПС, высокомолекулярные синтетические полимеры) способны стимулировать синтез антител без помощи Т-лимфоцитов.


В-лимфоцит с помощью своих иммуноглобулиновых рецепторов распознает и связывает антиген. Одновременно с В-клеткой антиген по представлению макрофага распознается Т-хелпером (Т-хелпером 2), который активируется и начинает синтезировать факторы роста и дифференцировки. Активированный этими факторами В-лимфоцит претерпевает ряд делений и одновременно дифференцируется в плазматические клетки, продуцирующие антитела.

Иммуноглобулины

- ❖- это высокоспециализированные белки, которые вырабатываются в ответ на появление антигена в организме и взаимодействуют с этим антигеном. Ід вырабатываются плазматическими клетками и циркулируют в крови и других биологических жидкостях организма.
- ♦Основная функция молекул Ig специфическое распознавание чужеродных антигенов и связывание с ними. Это приводит к удалению микробов и/или их токсинов из организма. Некоторые антитела специфически метят антигены и делают их более доступными для уничтожения фагоцитами.
- ♦Существует 5 классов иммуноглобулинов: IgM, IgG, IgA, IgE, IgD. Основной структурной единицей всех классов иммуноглобулинов является IgG.

Строение IgG



Иммуноглобулин IgG

Составляют основную массу иммуноглобулинов сыворотки крови, на их долю приходится 70 – 80 % всех сывороточных иммуноглобулинов.

IgG – мономер, имеет два антигенсвязывающих центра, т.е может связать две молекулы антигена. В отличие от других классов иммуноглобулинов эти антитела легко проходят через плаценту и обеспечивают естественный пассивный иммунитет у новорожденного. Границы концентрации IgG в

Границы концентрации IgG в сыворотке крови здоровых людей, начиная с 12 лет, составляют 5,3–16,5 мг/мл.

Причиной повышения значений концентрации IgG в сыворотке могут быть:

Хронические и возвратные гнойные инфекции (инфекционный мононуклеоз, туберкулез, лепра и др.).

Аутоиммунные заболевания, особенно системная красная волчанка, ревматоидный артрит.

Саркоидоз.

Муковисцидоз

Хронические поражения печени (хронический гепатит, цирроз), при этом степень повышения уровня IgG коррелирует с тяжестью заболевания.

Бессимптомная моноклональная (IgG) гаммапатия.

Множественная миелома <u>Снижение содержания IgG вызывается следующими заболеваниями:</u>

Новообразования лимфатической системы, лимфопролиферативные заболевания.

Состояние после спленэктомии.

Потери белка при энтеро- и нефропатиях.

Лечение иммунодепрессантами, цитостатиками.

Облучение ионизирующей радиацией.

Атопический дерматит и другие аллергические заболевания.

Наследственная мышечная дистрофия.

Транзиторная гипогаммаглобулинемия или медленный иммунологический старт (МИС-синдром) — у грудных детей.

Прием декстрана, метилпреднизолона, препаратов золота.

Агаммаглобулинемия (болезнь Брутона).

Синдром Вискотта-Олдрича (редкое X-сцепленное рецессивное заболевание, характеризующееся наличием экземы, тромбоцитопении, иммунодефицита, и кровавого поноса (обусловленного тромбоцитопенией))

Иммуноглобулин IgM

На долю IgM приходится 5 – 10 % всех сывороточных иммуноглобулинов. IgM - пентамер, имеющий 10 антигенсвязывающих участков. Границы концентрации IgM в сыворотке крови здоровых людей, начиная с 12 лет, составляют 0,5-2,0 мг/мл Антитела класса IgM в своей первоначальной мембраносвязанной форме служат р ецепторами В-клеток, при первичном иммунном ответе они первыми появляются в крови (ранние антитела). Действие их направлено прежде всего против микроорганизмов.

Причиной повышения значений концентрации IgM в сыворотке могут быть:

Вирусная инфекция (вирусный гепатит, инфекционный мононуклеоз).

Ранние признаки бактериальной или паразитарной инфекции.

Внутриутробные инфекции у новорожденных.

Острые и хронические гнойные инфекции, особенно желудочно-кишечного тракта и дыхательных путей.

Коллагенозы – ревматоидный артрит.

Бессимптомная моноклональная (IgM) гаммапатия.

Макроглобулинемия Вальденстрема.

Множественная миелома (lgM-тип). <u>Снижение содержания IgM возможно при следующих состояниях</u> организма:

Цитостатическая и лучевая терапия.

Состояние после спленэктомии.

Потери белка при гастроэнтеропатиях, ожогах.

Моноклональные гаммапатии (не IgM).

Агаммаглобулинемия (болезнь Брутона).

Прием декстрана, препаратов золота.

Селективный дефицит IgM.

Лимфома.

Иммуноглобулин IgA

На долю сывороточного IgA приходится около 10 – 15 % всех иммуноглобулинов.

Секреторный IgA представлен главным образом димерной формой.

Границы концентрации IgA в сыворотке крови здоровых людей, начиная с 15 лет, составляют 0,8–4,0 мг/мл IgA содержится преимущественно в выделениях слизистых оболочек — в слюне, слезной жидкости, носовых выделениях, поте, молозиве и в секретах легких, мочеполовых путей и желудочно-кишечного тракта, где обеспечивает защиту поверхностей, сообщающихся с внешней средой, от микроорганизмов

Причиной повышения содержания IgA в сыворотке могут быть:

Синдром Вискотта — Олдрича.

Хронические гнойные инфекции, особенно желудочно-кишечного тракта и дыхательных путей (астма, туберкулез).

Аутоиммунные заболевания, например, ревматоидный артрит на ранних стадиях.

Множественная миелома (lgA-тип).

Муковисцидоз.

Энтеропатии.

Алкоголизм.

<u>Снижение IgA в сыворотке могут происходить в результате</u> <u>следующих патологий:</u>

Новообразования лимфатической системы, лимфопролиферативные заболевания.

Состояние после спленэктомии.

Потери белка при энтеро- и нефропатиях.

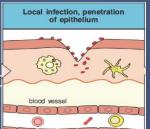
Лечение иммунодепрессантами, цитостатиками.

Агаммаглобулинемия (болезнь Брутона).

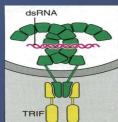
Атаксия-телеангиэктазия (синдром Луи-Бар).

Прием декстрана, метилпреднизолона, эстрогенов, карбамазепина, вальпроевой кислоты, препаратов золота.

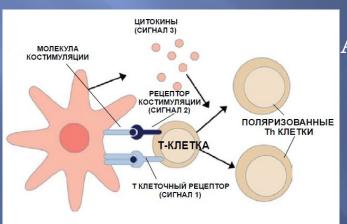
Иммуноглобулин IgE


Концентрация IgE в сыворотке крови невелика – менее 0,001% от всех иммуноглобулинов сыворотки крови (0 – 100 кЕ/л). Основная физиологическая функция IgE, очевидно, защита внешних слизистых оболочек организма путем локальной активации факторов плазмы и эффекторных клеток благодаря индукции острой воспалительной реакции. Определение содержания общего IgE в сыворотке используют для диагностики атопических аллергических заболеваний. Определение IgE имеет важное значение для диагностики редкого заболевания - гипер IgE-синдрома. Этот синдром характеризуется повышением IgE в крови до 2000-50000 кЕ/л, эозинофилией, резко выраженной крапивницей и гиперемией на вдыхаемые аллергены, пыльцу, пищу, бактериальные и грибковые аллергены. Астма не является характерной для данного синдрома. Снижение содержания IgE выявляют при атаксии телеангиэктазии вследствие дефекта Т-клеток.

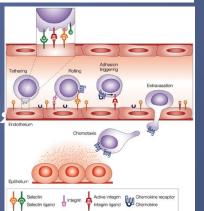
Иммуноглобулин IgD


IgD содержатся в сыворотке крови и составляют около 0,2 % общего количества циркулирующих иммуноглобулинов. обильно представлен на мембране многих В-клеток совместно с мономерным IgM. Вопрос о конкретной форме участия IgD в иммунных процессах остается открытым. Предположительно он участвует в антигензависимой дифференцировке лимфоцитов.

Основные этапы иммунного ответа. І


• В результате нарушения барьерной ткани патоген попад в организм и начинает размножаться.

• Он распознается рецепторами клеток врожденного иммунитета (макрофаги, дендритные клетки).


• Запускается воспалительная реакция (в т.ч. привлечение нейтрофилов из крови с помощью транссосудистой миграции хемокино которая может устранить инфекцию на локальном уровн

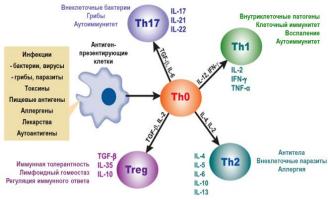
Активированные дендритные клетки в ответ на хемокины перемещаются в ближайшие лимфатические узлы и активируют наивные Т клетки, специфичные к конкретному эпитопу (формируются иммунологический синапс + участвуют все 3 сигнала).

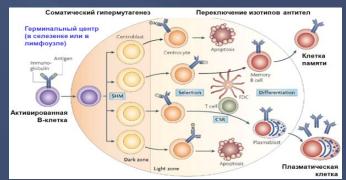
Основные этапы иммунного ответа. II

• Специфичные цитотоксические Т клетки могут двигаться в очаг воспаления (транссосудистая миграция, хемокины).

Cytokine CD40L TCR GAP IL-2IR CXCLI3

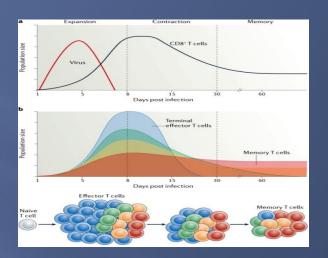
BCL-6

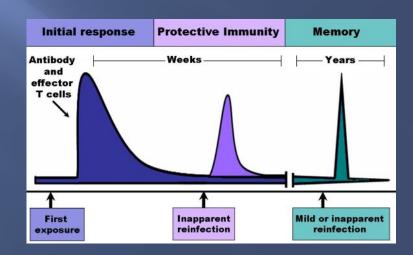

CXCR5


T_H cell

CXCR5

CX

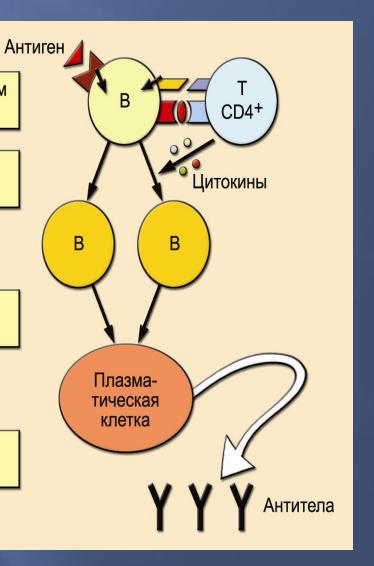

- Активированные специфические Т хелперы (Tfh), «помогают» образованию клонов специфических клеток, продуцирующих антитела (это происходи вторичных лимфоидных органах).
- Другие виды Т хелперов (Th1, Th2, Th17) осуществляют дополнительную иммунорегуляци работая с конкретным звеном врожденного иммунитета в зависимости от вида инфекции.
- В ЛУ В клетки проходят через дополнительную уникальную процедуру «созревание аффинитета».


Основные этапы иммунного ответа. III

• После завершения иммунного ответа специфические клоны Т и В клеток самоуничтожаются, но сохраняют в организме клетки памяти, которые могут понадобиться при повторном заражении тем же патогеном.

• Вторичный ответ,во-первых, быстрее. Во-вторых, качественнее.

• Именно эти свойства иммунного ответа используются для вакцинаций.


ФАЗЫ РАЗВИТИЯ ГУМОРАЛЬНОГО ИММУННОГО ОТВЕТА

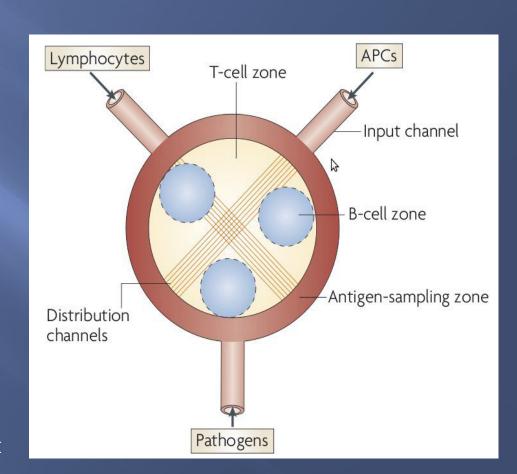
I. Стимуляция В-клетки антигеном с участием Т-хелперов


II. Активация и пролиферация В-клеток. Экспансия клона.

III. Дифференцировка В-клеток в плазматические клетки

IV. Секреция антител

Продукция IgM- и IgG-антител при первичном и вторичном иммунном ответе



Функции вторичных лимфоидных органов

- Захватывать патогены «на входе» и тем самым ограничивать их распространение.
- Способствовать контакту антиген-презентирующих клеток и лимфоцитов.
 - Способствовать контакту Т и В лимфоцитов.
 - Обеспечивать ниши для Дифференцировки эффекторных клеток.

Расположение, строение и функция лимфатических узлов

- ЛУ находятся на стыке лимфатических и кровеносных сосудов: по лимфатике из тканей поступают клетки, готовые к презентации антигена, а также свободный антиген.
- Из кровотока поступают лимфоциты: Т клетки для возможной встречи с антигеном, презентируемым дендритными клетками (ДК), и В клетки для возможной встречи со свободным антигеном.
- Т клетки выходят с лимфой и возвращаются в кровь через грудной проток (рециркуляция).

Рециркуляция лимфоцитов

- Лимфоциты постоянно патрулируют вторичные лимфоидные органы:
- Входят с кровью, через посткапиллярные венулы.
- Циркулируют по соответствующим «зонам» для повышения вероятности необходимых клеточных контактов.
- Выходят из органов с эфферентной лимфой.
- Возвращаются в кровоток через грудной проток.
- Баланс между кровью и лимфоидными органами регулируется,
- в том числе, гомеостатическими хемокинами и сфингозин-1- фосфатом через соответствующие рецепторы на лимфоцитах.

Этапы инволюции центральных и периферических лимфоидных органов

Инволюция- заключается в постепенном замещении паренхиматозных элементов тимуса жировой и рыхлой соединительной тканью, обогащении тельцами Гассаля при почти неизменной общей массе органа.

четыре фазы:

- быструю (к 10-летнему возрасту),
- медленную (в промежутке с 10 до 25 годов),
- ускоренную (от 25 до 40 годов) и
- замедленную (после 40 годов).

Скорость возрастной инволюции тимуса в значительной мере определяется гормональным статусом организма. В старческом возрасте возрасте тимус полностью замещается жировой тканью и превращается в жировое

ТЕЛО. Отсутствие возрастной инволюции тимуса - тимико-лимфатического статуса. Сопровождается недостаточностью глюкокортикоидной функции коры надпочечников, разрастанием лимфоидной ткани в органах. Резко падает сопротивляемость организма к инфекциям, интоксикациям, растет угроза возникновения злокачественныхновообразований.

Действии на организм неблагоприятных факторов— травм, голода, интоксикаций, инфекций— имеет место так называемая <u>акцидентальная инволюция тимуса</u>. При этом наблюдается массовая гибель лимфоцитов, их выселение в периферийные органы иммуногенеза, пролиферация и набухание эпителиоретикулоцитов, - проявлением защитных реакций организма.

Костный мозг

В <u>детском возрасте</u> красный костный мозг заполняет диафизы и эпифизы трубчатых костей, плоские кости.

В <u>12–18 лет</u> красный костный мозг в диафизахтрубчатых костей замещается на желтый костный мозг. В состав последнего входят адипоциты. В норме желтый костный мозг не несет функций гемопоэза, однако при массивной кровопотере в нем могут появляться центры миелоидного кроветворения.

В старческом возрасте красный и желтый костный мозг приобретают вязкую консистенцию и называются желатинозным костным мозгом.

Селезёнка

Начиная <u>с 6 месяца</u>и к рождению ребенка проявления миелоидногокроветворения погасают, их вытесняют процессы лимфоцитопоэза.

В зрелом возрасте селезенка проявляет значительные репаративные возможности; экспериментально доказана возможность ее возобновления при потере 80–90% паренхимы. Масса селезенки несколько уменьшается в возрасте <u>с 20 до 30 годов</u>;

в промежутке *с 30 до 60 годов* она стабильна.

<u>В старческом возрасте</u> отмечена:

- атрофия красной и белой пульп,
- разрастания соединительно тканной стромы,
- снижения содержания среди паренхиматозных элементов макрофагов и лимфоцитов,
- повышения содержания гранулоцитов и тканевых базофилов, появление мегакариоцитов.
- ухудшается утилизация железа из разрушенных в селезенке эритроцитов.

В старческом возрасте количество реактивных центров <u>в</u> фолликулах лимфоузлов уменьшается, падает фагоцитарная активность макрофагов, часть узлов атрофируется и происходит их замещение жировой тканью.