Многогранный многогранник

Работу выполнили ученицы 9 г класса МОБУ Лицея №9 Иманова Юлиана Кульмухаметова Эльза

Цель работы:

на основе полученных знаний, о свойствах и правилах построения многогранников, создать совершенно новый многогранник.

Объект исследования:

многогранник, как модель различных тел.

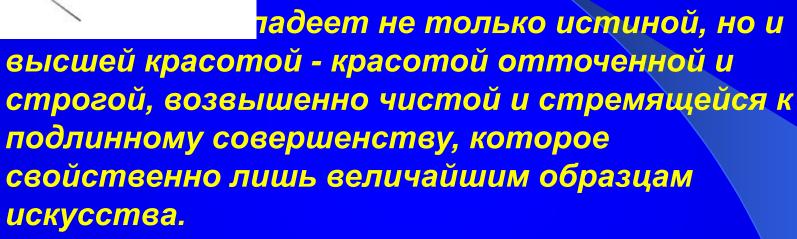
Предмет исследования:

процесс использования многогранников в разных сферах жизни и науках.

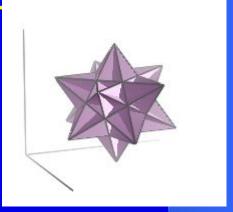
Гипотеза: мы считаем, что многогранник являясь моделью различных тел используется в разных сферах жизни человека и науках.

Задачи:

- Дать понятие правильных многогранников (на основе определения многогранников)
- - Рассмотреть свойства правильных многогранников.
- - Познакомить с историческими фактами, связанными с теорией правильных многогранников.
- - Научиться моделировать различные геометрические тела



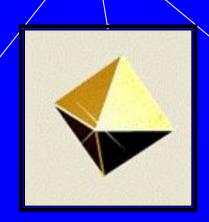
Бертран Рассел



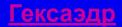
ПРАВИЛЬНЫЙ МНОГОГРАННИК-

выпуклый многогранник, грани которого являются правильными многоугольниками с одним и тем же числом сторон и в каждой вершине которого сходится одно и то же число ребер.

<u>Тетраэдр</u>



Октаэдр



икосаэдр

<u>Додекаэдр</u>

«эдра» - грань

«тетра» - 4

«гекса» - 6

«окта» - 8

«икоса» - 20

«додека» - 12

Правильными многогранниками

называют выпуклые многогранники, все грани и все углы которых равны, причем грани - правильные многоугольники.

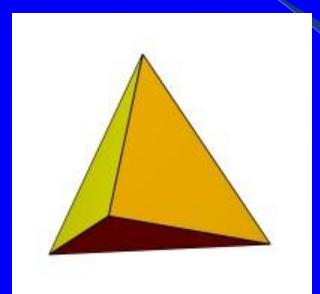
В каждой вершине правильного многогранника сходится одно и то же число рёбер.

Все двугранные углы при рёбрах и все многогранные углы при вершинах правильного многоугольника равны.

Правильные многогранники - трехмерный аналог плоских правильных многоугольников.

Тетраэдр не имеет центра симметрии но у него есть в оси симметрии и б плоскостей симметрии.

$$S = \alpha^2 \sqrt{3}$$

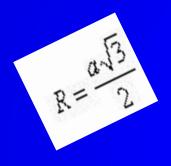


$$r = \frac{a}{12}\sqrt{6}$$

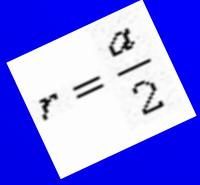
$$V = \frac{a^3}{12}\sqrt{2}$$

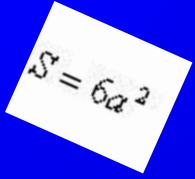
$$R = \frac{a}{4}\sqrt{6}$$

Куб имеет один центр симметрии осей симметриии плоскостей симметрии.





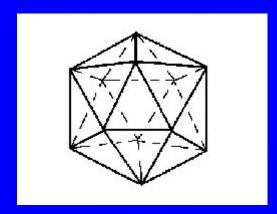




Икосаэдр имеет центр симметрии ■ центр икосаэдра ■ осей симметрии и ■ плоскостей симметрии.

$$r = \frac{a}{4\sqrt{3}} \left(3 + \sqrt{5} \right)$$

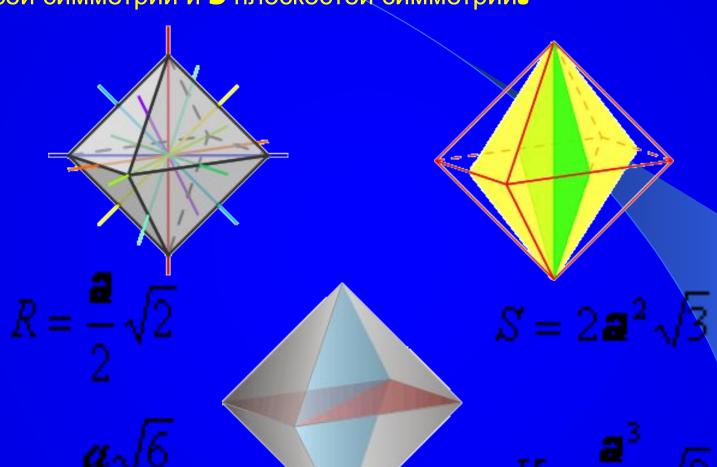
$$S = 5a^2\sqrt{3}$$



$$R = \frac{\alpha}{4} \sqrt{2(5 + \sqrt{5})}$$

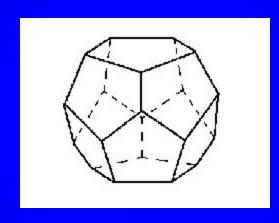
$$V = \frac{5a^3}{12} \left(3 + \sqrt{5} \right)$$

Центр симметрии октаэдра- это центр октаэдра. Октаэдр имеет ● осей симметрии и плоскостей симметрии.



Додекаэдр имеет центр симметрии центр додекаэдра осей симметрии и Б плоскостей симметрии

$$r = \frac{a}{4}\sqrt{10 + \frac{22}{\sqrt{5}}}$$



$$R = \frac{\alpha}{4} \left(1 + \sqrt{5} \right) \sqrt{3}$$

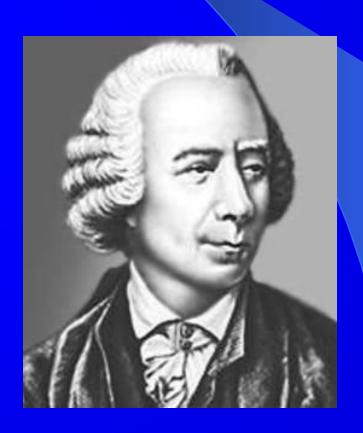
$$V = \frac{a^3}{4} \left(15 + 7\sqrt{5} \right)$$

$$S = 3a^2 \sqrt{5(5 + 2\sqrt{5})}$$

Теорема Эйлера

Число вершин минус число рёбер плюс число граней равно двум.

 $\mathbf{B} - \mathbf{P} + \mathbf{\Gamma} = \mathbf{2}$

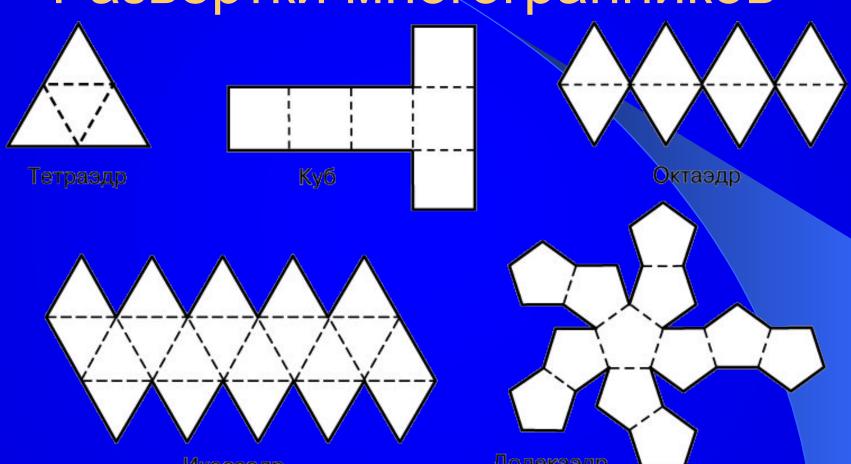


Теорема Эйлера. Пусть B --- число вершин выпуклого многогранника, P --- число его рёбер и Γ --- число граней. Тогда верно равенство B- $P+\Gamma=2$

Многогран- ник	Число рёбер при вершине	Число рёбер одной грани	Число граней	Число рёбер	Число вершин
Тетраэдр	3	3	4	6	4
Гексаэдр (куб)	3	4	6	12	8
Октаэдр	4	3	8	12	6
Додекаэдр	3	5	12	30	20
Икосаэдр	5	3	20	30	12

Число =B-P+Г называется эйлеровой характеристикой многогранника. Согласно теореме Эйлера, для выпуклого многогранника эта характеристика равна 2. То ,что эйлерова характеристика равна 2 для некоторых знакомых нам многогранников, видно из таблицы.

Развёртки многогранников



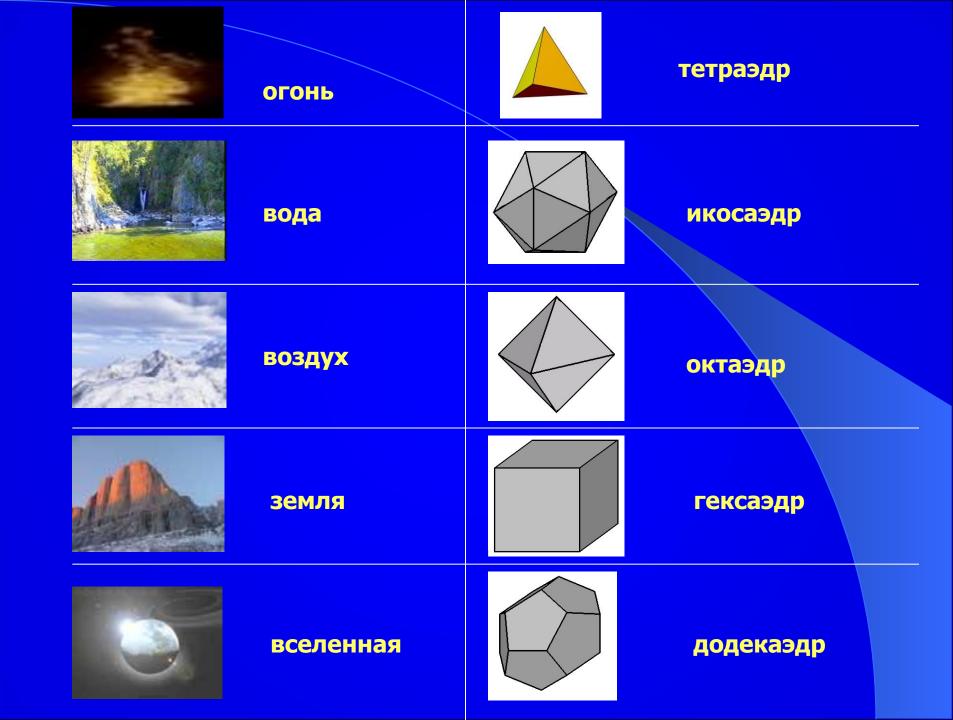
Тетраэдр

<u>Икосаэдр</u>

<u>Гексаэдр</u>

<u>Октаэдр</u>

<u>Додекаэдр</u>



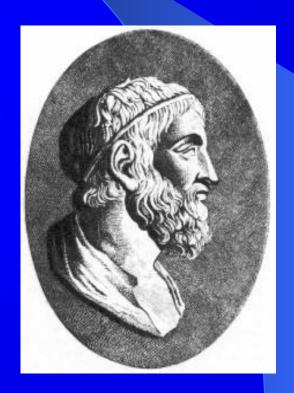
Выводы:

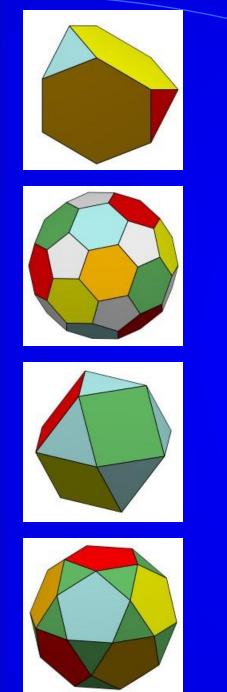
Многогранник называется правильным, если:

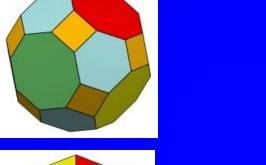
- Он выпуклый;
- Все его грани равные правильные многоугольники;
- В каждой вершине сходится одно число граней;
- Все его двугранные углы равны.

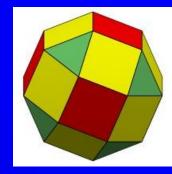
Тела Архимеда

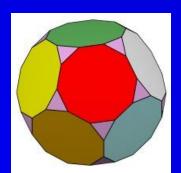
Архимедовыми телами называются полуправильные однородные выпуклые многогранники, то есть выпуклые многогранники, все многогранные углы которых равны, а грани - правильные многоугольники нескольких типов.

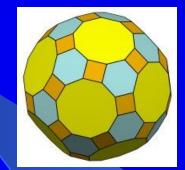


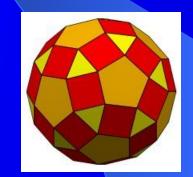


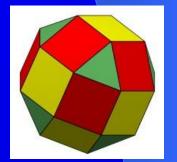


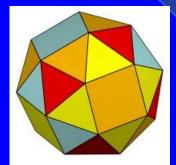












Тела Кеплера - Пуансо

Среди невыпуклых однородных многогранников существуют аналоги платоновых тел - четыре правильных невыпуклых однородных многогранника или тела Кеплера - Пуансо. Как следует из их названия, тела Кеплера-Пуансо - это невыпуклые однородные многогранники, все грани которых - одинаковые правильные многоугольники, и все многогранные углы которых равны. Грани при этом могут быть как выпуклыми, так и невыпуклыми.

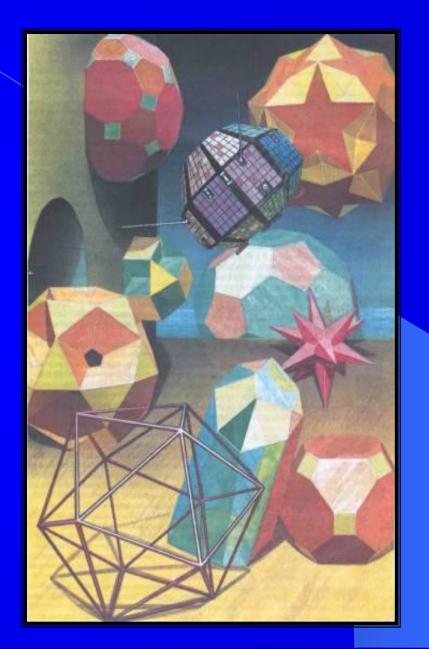
<u>Малый звездчатый</u> <u>додекаэдр</u>

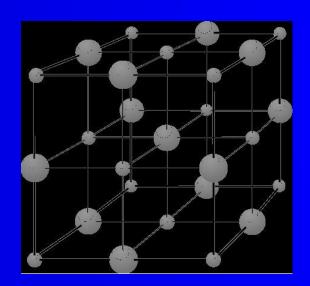
<u>Большой додекаэдр</u>

<u>Большой звездчатый</u> <u>додекаэдр</u>

Большой икосаэдр

Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук. Л. Кэррол





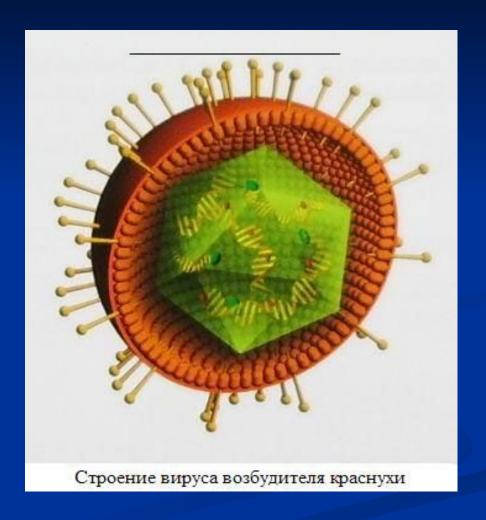
<u>Строение атома</u> <u>поваренной соли</u>

<u>Кристалл</u> <u>поваренной соли</u>

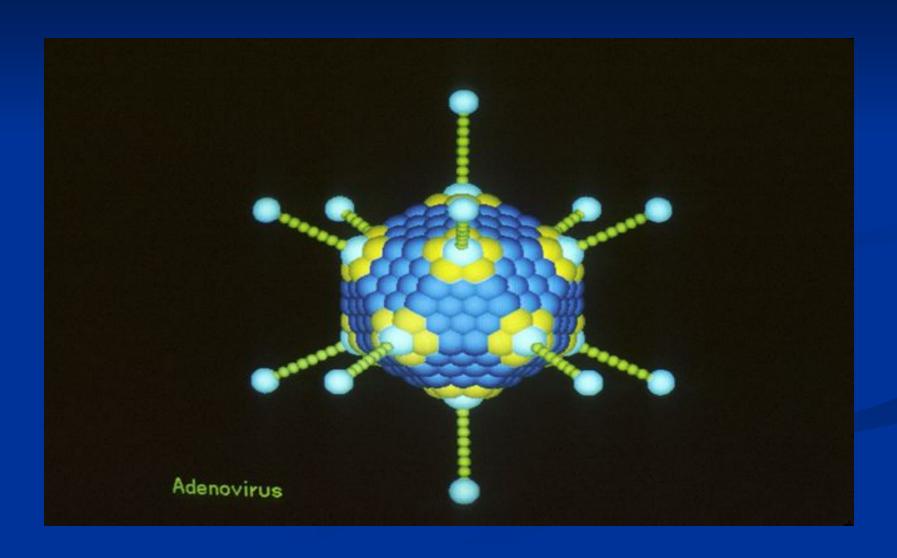
<u>Строение</u> атома метана

Вирус полиомиелита имеет форму додекаэдра.

Икосаэдр оказался в центре внимания биологов в их мнениях относительно формы вирусов.

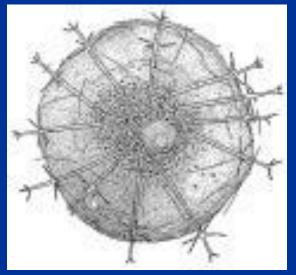


Капсида вируса с икосаэдрической симметрией.

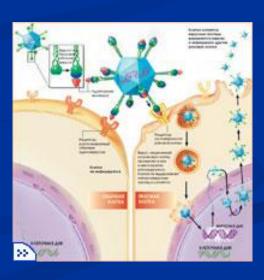


<u>Структура ДНК генетического кода жизни –</u> представляет собой четырехмерную развертку (по оси времени) вращающегося додекаэдра.

Феодария



<u>Вирусы</u>



Многогранники в природе.

Правильные многогранники – самые выгодные фигуры. И природа этим широко пользуется. Подтверждением тому служит форма некоторых кристаллов.

Кристалл сульфата меди II

<u>Кристалл</u> <u>алюмокалиевых</u> <u>квасцов</u>

<u>Кристалл сульфата</u> <u>никеля II</u>

Кристаллы

Шестой элемент периодической системы С(углерод) характеризуется структурой октаэдра. Кристаллы октаэдра обычно имеют форму октаэдра.

<u>Рубин</u>

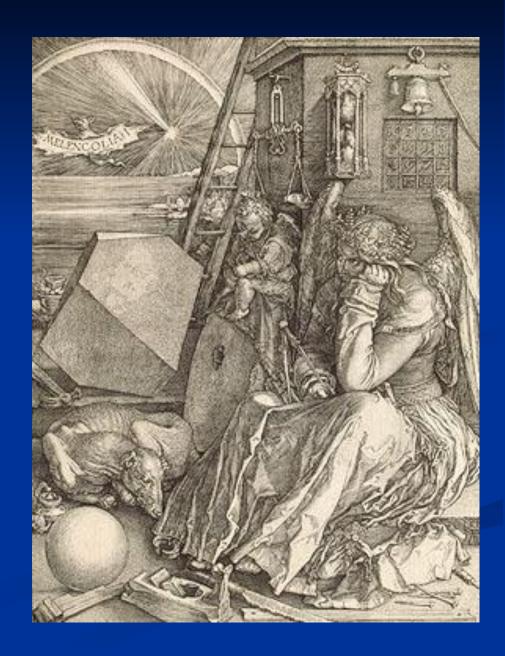
<u>Алмаз</u>

Кристаллы в форме призм.

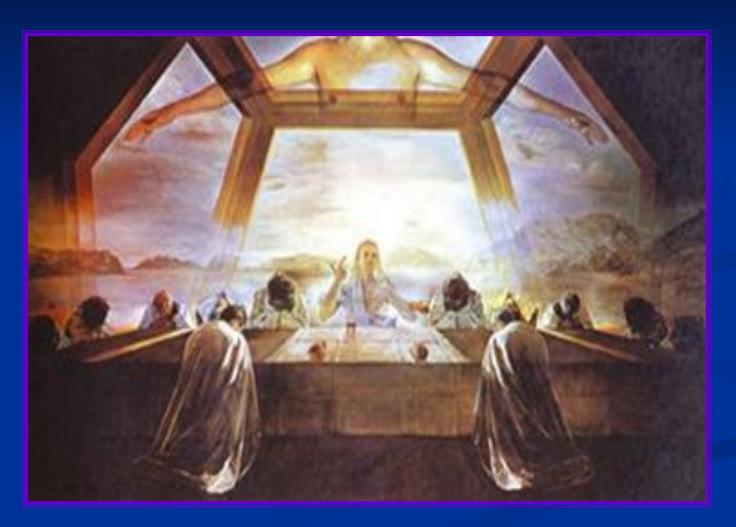
<u>Рубин</u>

Горный хрусталь

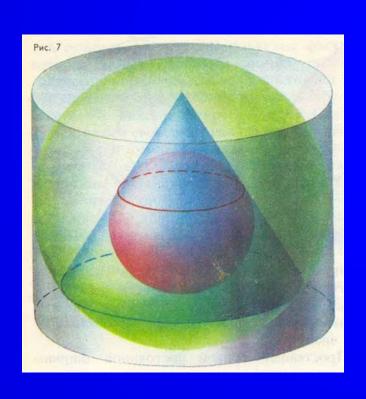
В эпоху Возрождения большой интерес к формам правильных многогранников проявили скульпторы. Знаменитый художник, увлекавшийся геометрией Альбрехт Дюрер (1471-1528), в известной гравюре "Меланхолия " на переднем плане изобразил додекаэдр.



«Тайная вечеря» С.Дали



Математика, в частности геометрия, представляет собой могущественный инструмент познания природы, создания техники и преобразования мира.



Тетраедра .
$$.\frac{a^3\sqrt{2}}{12} = \frac{8}{27}R^3\sqrt{3} = 8r^5\sqrt{3}$$
.
Куба . $.a^3 = \frac{8}{3\sqrt{3}}R^3 = 8r^3$.
Октаэдра . $.\frac{a^3}{3}\sqrt{2} = \frac{4}{3}R^3 = 4r^3\sqrt{3}$.
Додекаэдра. $.\frac{a^3}{4}\sqrt{5}(7+3\sqrt{5}) =$

$$= \frac{2}{9}R^3\sqrt{15}(1+\sqrt{5}) =$$

$$= 10r^3\sqrt{2}\sqrt{65-29\sqrt{5}}.$$
Икосаэдра . $.\frac{5}{12}a^3(3+\sqrt{5}) =$

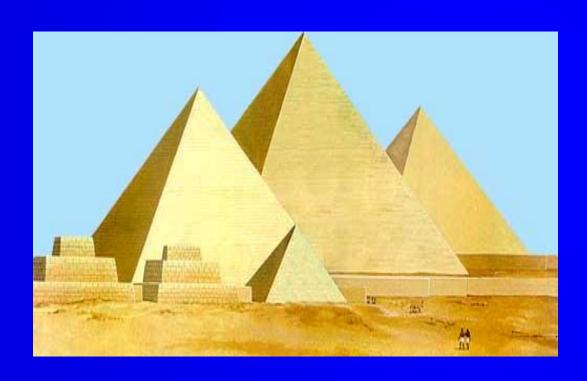
$$= \frac{2}{3}R^3\sqrt{10+2\sqrt{5}} =$$

$$= 10r^3\sqrt{3}(7-3\sqrt{5}).$$

Многогранники в архитектуре

Во всем облике японского строения очевидна идея преобразования пространства, подчинения его новой логике - логике "завоевания" природного ландшафта, которому противопоставлена четкая геометрия проникающих архитектурных форм.

ЦАРСКАЯ ГРОБНИЦА



Великая пирамида в Гизе. Эта грандиозная Египетская пирамида является древнейшим из Семи чудес древности. Кроме того, это <mark>единственн</mark>ое из чудес, сохранившееся до наших дней. Во времена своего создания Великая пирамида была самым высоким сооружением в мире. И удерживала она этот рекорд, по всей видимости, почти 4000 лет.

Дом-многогранник

Пчелы строили шестиугольные соты задолго до появления человека.

«Мой дом построен по законам самой строгой архитектуры. Сам Евклид мог бы поучиться, познавая мою геометрию»

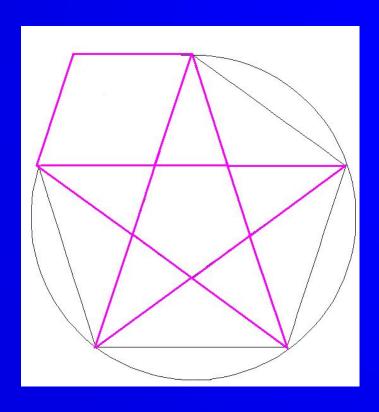
Мир многогранников

Проект «Звездное небо».

- Целью проекта было создание совершенно нового многогранника шарообразной формы. За основу были взяты плоские фигуры звезды и ромба.
- Количество звезд-12,
 количество ромбов-30.

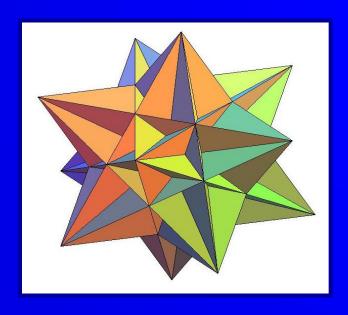
«Звездное небо».

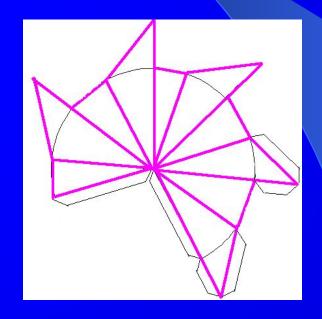
• Звезда и ромб



«Звезда Элан»

• Модель большого • Развертка Элан икосаэдра-12 шт.





«Звезда Элан»

Вывод.

Спасибо за внимание!

