МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ
ВЫКСУНСКИЙ ФИЛИАЛ
ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО АВТОНОМНОГО
ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО
ОБРАЗОВАНИЯ
«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ
УНИВЕРСИТЕТ «МИСиС»

Отчет по преддипломной практике на предприятии ОАО «РУСПОЛИМЕТ»

Выполнил студент гр.ЭМ-2-12: Карпов Ф. И.

Руководитель: Марчук В. В.

предприятие ОАО

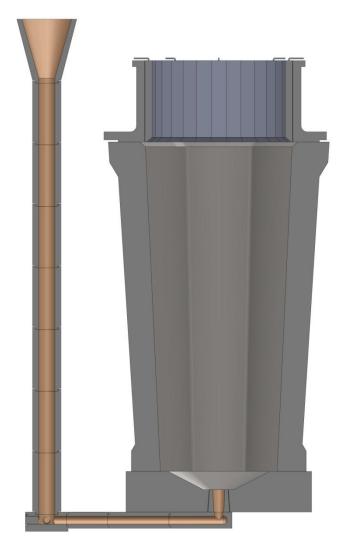
Дуговая сталеплавильная печь

- Вместимость 6 т
- Номинальная мощность трансформатора 7 MBA
- Продолжительность плавки 55 мин

Агрегат ковш-печь АКП-6

- Вместимость 6 т
- Номинальная мощность трансформатора 2,5 MBA
- Продолжительность обработки 50 мин

Камерный вакууматор


- Вместимость 6 т
- Продолжительность обработки 30 мин
 - Давление менее 1 мм.рт.ст (1,33 мбар)

Разливочная машина

Устройство разливочной машины

Сифонная 4-х лучевая система

индивидуальное задание: совершенствование технологии производства низколегированной стали марки 09Г2С

Химический состав стали марки 09Г2С, %

С	Si	Mn	Ni	S	Р	Cr	N	Cu	As
до	0.5 -	1.3 -	до 0.3	до	до	до	до	до	до
0.12	0.8	1.7		0.04	0.035	0.3	0.008	0.3	0.08

Из этой марки стали изготавливаются элементы и детали сварных металлических конструкций, которые могут работать при температурах от -70 °C до +450°C. Лист 09Г2С используется и для производства листовых конструкций в нефтяной и химической промышленности, судостроении и машиностроении.

Химический состав железоуглеродистого полупродукта для производства стали марки 09Г2С, %

С	Si	Mn	Cr	Ni	Cu	S	P
0,05	≤0,10	0,15-0,3	≤0,15	≤0,30	≤0,30	≤0,04	≤0,010

Технология шлакового режима

Шлакообразующая смесь в период становления технологии внепечной обработки стали

Известь, кг/т	Плавиковый шпат, кг/т	Алюминий, кг/т	Всего, кг/т
18	0,5	1,7	20,2

[S] =0,005-0,008 %; [N] =0,010-0,012 %

Шлакообразующая смесь после усовершенствования технологии внепечной обработки

Известь, кг/т	Плавиковый шпат, кг/т	Алюминий, кг/т	Всего, кг/т
30	4,8	3,2	38

[S]≤0,003%; [N] ≤0,008%

Средний химический состав шлака при ковшевой обработке стали марки 09Г2С, %

CaO	SiO_2	Al_2O_3	Fe_2O_3	MgO
50-60	7-11	25-35	0,5-1,0	4,5-8

Оценочный расчет коэффициента распределения серы между шлаком и металлом при базовой и усовершенствованной технологии

Формула определения серы в шлаке:

$$(S) = S_{\underline{\mathbf{m}}} / (\frac{1}{n_s} + 0.01 \cdot \underline{\mathbf{H}})$$

Где, S_{...} - сера, вносимая шихтовыми материалами и легирующими добавками;

Ш - масса шлака, % к массе металла; ης- коэффициент распределения серы между шлаком и металлом.

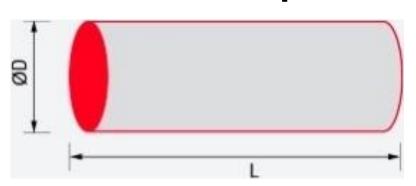
Где, $m_{_{\text{шл. см.}}}$ - масса шлаковой смеси, $K\Gamma/T$; Формула расчета коэффициента распределени $\eta_{S} = \frac{S_{III}}{|S|}$ иежду шлаком и металлом :

[S] – содержание серы в металле

Коэффициент распределения серы между шлаком и металлом при использовании базовой технологии ([S]=0,006 %;
$$S_{_{\rm II}}$$
=0,06; $\eta_{_{\rm S}}$ =5):
$$III_{_{\rm I}} = \frac{(20,2+5)}{1000} \times 100 \% = 2,52 \%$$

$$(S)_{_{\rm I}} = 0,06/(\frac{1}{5}+0,01\cdot 2,52) = 0,266 \%$$

$$\eta_{_{{\rm S}{\rm I}}} = \frac{0,266}{0.006} = 44_{_{\rm I}}$$

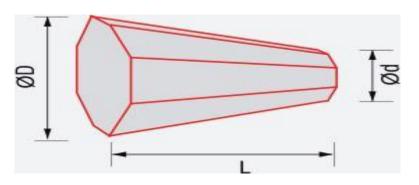

Коэффициент распределения серы между шлаком и металлом при использовании усовершенствованной технологии ([S]=0,003 %; $S_{...}=0.06$; $\eta_{s}=5$):

$$III_2 = \frac{(38+5)}{1000} \times 100 \% = 4.3 \%$$

$$(S)_2 = 0.06 / (\frac{1}{5} + 0.01 \cdot 4.3) = 0.247 \%$$

$$\eta_{s2} = \frac{0.247}{0.003} = 82$$

Сортамент слитков



Цилиндрические слитки D=360-582 мм; L=1321-2030 мм Масса: 950-4525 кг

Цилиндрические слитки, ЭШП

D=160-240 мм; L=600-1200 мм Масса: 95-444 кг

Кузнечные слитки D=350-640 мм; d=246-530 мм L=1400-1588 мм; Macca: 950-4525 к

Цилиндрические слитки, ВДП D=290-360 мм; L=700-1300 мм Масса: 650-900 кг

11

Дефекты слитков

Средства индивидуальной

Респирато

13

Заключение

Совершенствование технологии внепечной обработки стали 09Г2С позволило снизить ее загрязненность неметаллическими включениями до уровня менее 1,5 баллов, содержание серы 0,001-0,003 % и азота 0,006-0,008 %.

Спасибо за внимание!