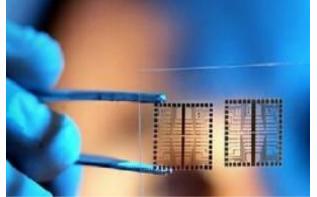
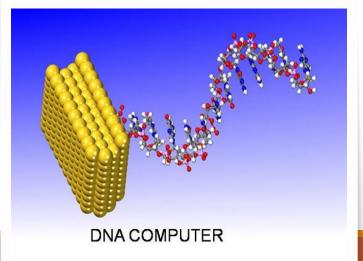
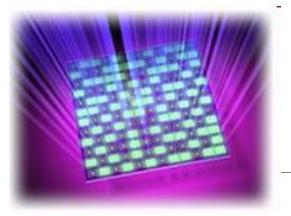
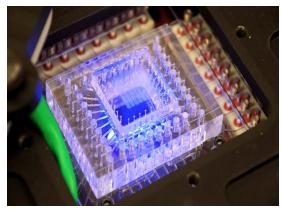

Тема урока: **Клеточные и ДНК-процессоры**


В настоящее время в поисках реальной альтернативы полупроводниковым технологиям создания новых вычислительных систем ученые обращают все большее внимание на биотехнологии, или биокомпьютинг, который представляет собой гибрид информационных, молекулярных технологий, также биохимии.


Биокомпьютинг позволяет решать сложные вычислительные задачи, пользуясь методами, принятыми в биохимии и молекулярной биологии, организуя вычисления при помощи живых тканей, клеток, вирусов и биомолекул.

ДНК-процессоры





Так же, как и любой другой процессор, ДНК процессор характеризуется структурой и набором команд. В нашем случае структура процессора - это структура молекулы ДНК.

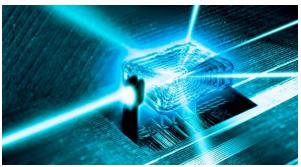
А набор команд - это перечень биохимических операций с молекулами.

Использование молекул **DNA** (Д**HK**) для организации вычислений — это не слишком новая идея. Теоретическое обоснование подобной возможности было сделано еще в 50-х годах прошлого века (Р.П. Фейманом). В деталях эта теория была проработана в 70-х годах Ч. Бенеттом и в 80-х М. Конрадом.

Первый компьютер на базе ДНК был создан еще в 1994 г. американским ученым Леонардом Адлеманом.

Он смешал в пробирке молекулу ДНК, в которой были закодированы исходные данные, и специальным образом подобранные ферменты.

Первую модель биокомпьютера, правда, в виде механизма из пластмассы, в 1999 г. создал Ихуд Шапиро из Вейцмановского института естественных наук.

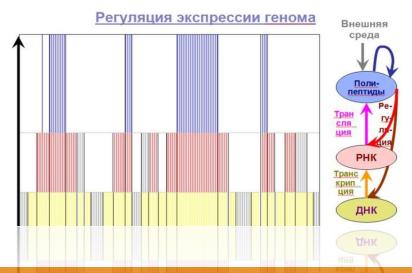

Она имитировала работу "молекулярной машины" в живой клетке, собирающей белковые молекулы по информации с ДНК, используя РНК в качестве посредника между ДНК и белком.

А в 2001 г. Шапиро удалось реализовать вычислительное устройство на основе ДНК, которое может работать почти без вмешательства человека. Система имитирует машину Тьюринга — одну из фундаментальных концепций вычислительной техники.

Клеточные компьютеры

Клеточные компьютеры представляют собой самоорганизующиеся колонии различных "умных" микроорганизмов, в геном которых удалось включить некую логическую схему, которая могла бы активизироваться в присутствии определенного вещества.

Для этой цели идеально подошли бы бактерии, стакан с которыми и представлял бы собой компьютер. Такие компьютеры очень дешевы в производстве. Им не нужна столь стерильная атмосфера, как при производстве полупроводников.



новная проблема, с которой сталкиваются здатели клеточных биокомпьютеров, - ганизация всех клеток в единую работающую стему.

сегодняшний день практические достижения в ласти клеточных компьютеров напоминают стижения 20-х годов в области ламповых и лупроводниковых компьютеров.

«Компьютер в клетке»

К достоинствам, выгодно отличающим их от компьютеров, основанных на кремниевых технологиях, относятся:

1) более простая технология изготовления, не требующая для своей реализации столь жестких условий, как при производстве полупроводников;

2) использование не бинарного, а тернарного кода (информация кодируется тройками нуклеотидов), что позволит при меньшем количестве шагов перебрать большее число вариантов при анализе сложных систем;

3) потенциально исключительно высокая производительность, которая может составлять до 1014 операций в секунду за счет одновременного вступления в реакцию триллионов молекул ДНК;

4) возможность хранить данные с плотностью, в триллионы раз превышающей показатели оптических дисков;

5. исключительно низкое энергопотребление.

Однако, наряду с очевидными достоинствами, биокомпьютеры имеют и существенные недостатки, такие как:

1.сложность со считыванием результатов - современные способы определения кодирующей последовательности не совершенны, сложны, трудоемки и дороги;

2.низкая точность вычислений, связанная с возникновением мутаций, прилипанием молекул к стенкам сосудов и т.д.;

Хотя до практического использования биокомпьютеров еще очень далеко, и они вряд ли будут рассчитаны на широкие массы пользователей, предполагается, что, они найдут достойное применение в медицине и фармакологии, а также с их помощью станет возможным объединение информационных и биотехнологий.

Контрольные вопросы:

- 1. Нанокомпьютер
- 2. Квантовый компьютер
- 3. Нейрокомпьютер