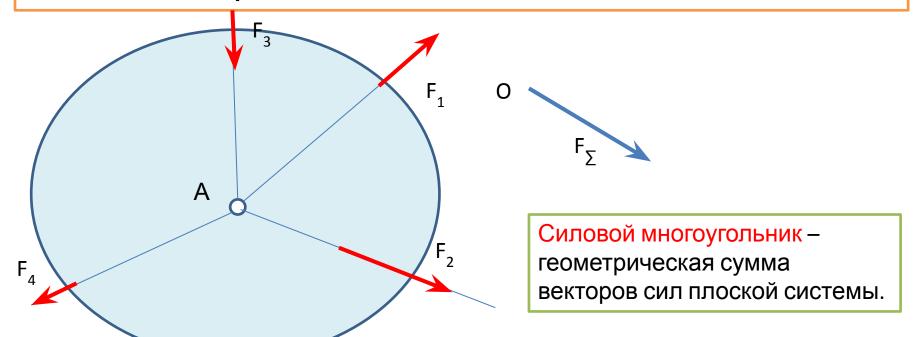
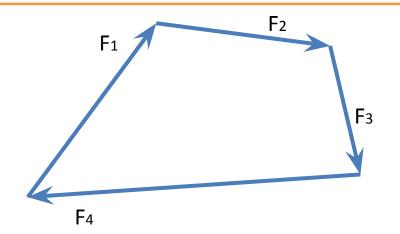
Дисциплина: Техническая механика


Раздел: Статика

## Тема: Плоская система сходящихся сил

Литература: Мовнин М.С. Основы технической механики: Учебник для технологических немашиностроительных специальностей техникумов и колледжей / М.С. Мовнин, А.Б. Израелит, А.Г. Рубашкин; Под ред. П.И. Бегуна. – 5-е изд. переработ. и доп. – СПб.: Политехника, 2011.

# 1. Геометрический метод сложения сил, приложенных в олной точке


Силы называют сходящимися, если их линии действия пересекаются в одной точке.

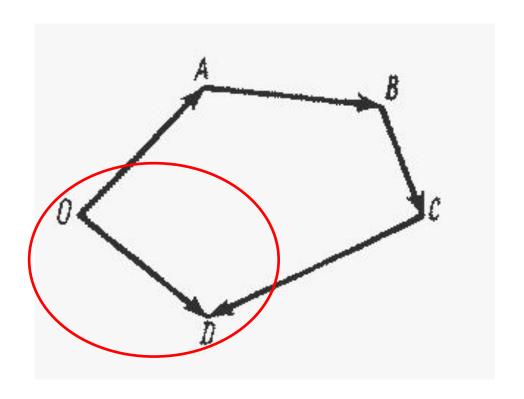


Равнодействующая сила  $F_{\Sigma}$  - замыкающий суммарный вектор силового многоугольника, направлен из начальной точки первого вектора в конечную точку последнего вектора.  $F_{\Sigma} = F_{1} + F_{2} + \dots + F_{n} = \sum_{i=1}^{n} F_{i}$ 

## 2. Условие равновесия плоской системы сходящихся сил

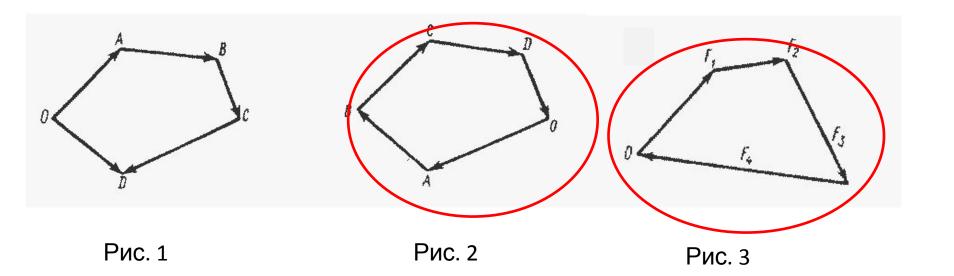
При построении силового многоугольника конечная точка последней слагаемой силы совместится с началом первой:




F<sub>∑</sub> = 0 результирующая сила = 0(суммарный вектор системы сил = 0)

=> система сходящихся сил находится в равновесии.

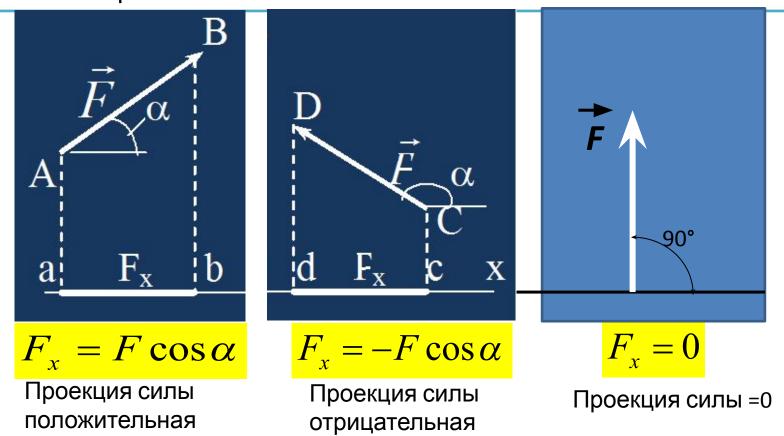
Самозамыкание силового многоугольника данной ПССС является геометрическим условием её равновесия.


## Упражнение:

- 1. Какой вектор силового многоугольника является равнодействующей силой данной системы:
  - A. OA
  - B. AB
  - C. BC
  - D. CD
  - E. OD

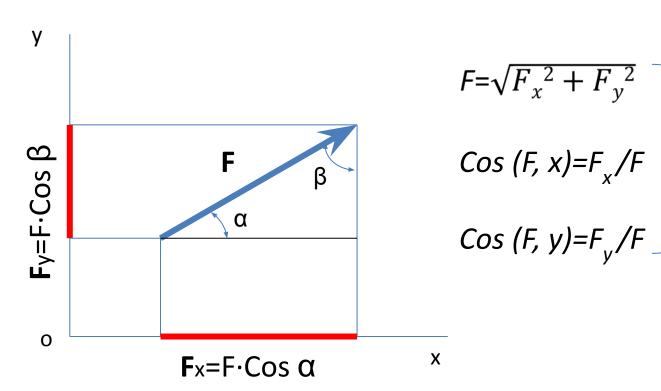


## Упражнение:


- 2. Какой из многоугольников соответствует уравновешенной системе сходящихся сил:
  - А. Рис. 1
  - В. Рис. 2
  - С. Рис. 3



### 3. Проекция силы на ось


Проекция вектора на ось – скалярная величина;

отрезок оси, отсеченный перпендикулярами, опущенными из крайних точек вектора:



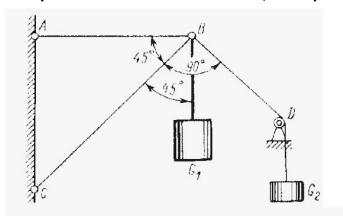
Проекция силы на ось координат равна произведению модуля силы на косинус угла между вектором силы и положительным направлением оси.

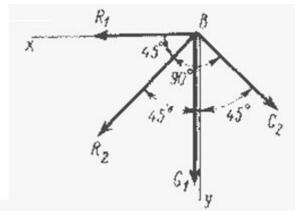
## 4. Проекции силы в системе осей координат X, Y



Формулы для определения модуля и направления силы по проекциям силы на координатны е оси

## 5. Уравнение равновесия ПССС


Система сходящихся сил находится в равновесии, когда алгебраические суммы проекций её слагаемых на каждую координатную ось равны нупю:


$$F_{\Sigma x} = \sum_{i=1}^{n} F_{ix};$$
  $\sum_{i=1}^{n} F_{ix} = 0;$   $F_{\Sigma x} = 0$   $F_{\Sigma y} = \sum_{i=1}^{n} F_{iy};$   $\sum_{i=1}^{n} F_{iy} = 0,$   $F_{\Sigma y} = 0$ 

## Решение задач на равновесие ПССС

#### Пример:

К кронштейну ABC в точке В подвешены два груза (груз  $G_1$  = 600 H, груз  $G_2$  = 400 H через отводной блок D). Определить реакции стержней AB и BC кронштейна.





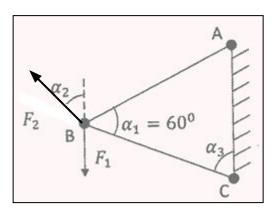
$$F_{\Sigma x} = O$$

$$R_1 = G_2 \cos 45^\circ + R_2 \cos 45^\circ = 0;$$

$$F_{\Sigma y} = O$$
  $G_1 + R_2 \cos 45^\circ + G_2 \cos 45^\circ = 0.$ 

$$R_2 = -G_2 - \frac{G_1}{\cos 45^\circ} = -400 - \frac{600}{0,707} = -1249 \text{ H};$$

$$R_1 = G_2 \cos 45^\circ - R_2 \cos 45^\circ = 400 \cdot 0,707 - (-1249) \ 0,707 = 1166 \ H.$$


#### Алгоритм:

- схема сил и реакций;
- направление осей X, У;
- 3. система уравнений равновесия;
- 4. определяем реакции.

Ответ: R<sub>1</sub>=1166 H (стержень AB растянут), R2= - 1249 H (стержень BC сжат).

### Задача 1

Определить усилия в стержнях AB и BC заданной стержневой системы.  $F_1$ =20 H;  $F_2$ =40 H;  $G_2$ =30°;  $G_3$ =60°

