
Раздел: Кислородосодержащие соединения Химия. 10 класс

Карбоновые кислоты. Строение, номенклатура, изомерия

учитель химии МБОУ «Школа №29» г.о. Самара

> Писарева Екатерина Викторовна

Условные обозначения

Это интересно

Необходимо записать в тетрадь

Ограниченно время выполнения задания

Домашнее задание

Дайте полную характеристику веществу:

Химические свойства: окисление альдегидов

$$CH_3-C_H$$
 + Ag_2O \rightarrow CH_3-C_O + $2Ag_1$

Представьте...

Вы разрезали ножом спелый лимон, по ножу потекла капелька мутноватого сока. Вы берете в рот дольку лимона и ... Почему сок лимона кислый?

соке лимона, и в соке щавеля, и в соке незрелого яблока имеются ческие карбоновые кислоты.

Что придает кислый вкус щавелю и Почему больно жалит крапива? незрелому яблоку?

И в соке лимона, и в соке щавеля, и в соке незрелого яблока имеются органические карбоновые кислоты.

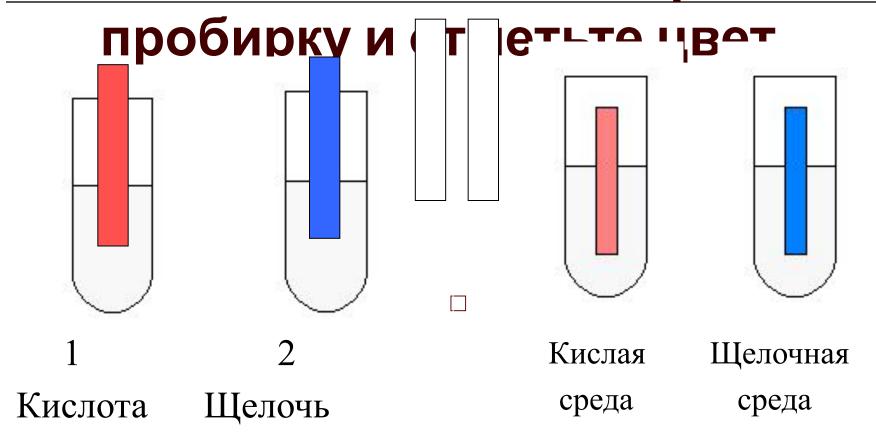
Содержание урока:

- 1. Определение
- 2. Классификация карбоновых кислот
- 3. Природные источники карбоновых кислот
- 4. Тривиальные названия кислот
- 5. Предельные одноосновные карбоновые кислоты
- 6. Генетический ряд карбоновых кислот
- 7. Изомерия
- 8. Номенклатура
- <u>Упражнение</u>
- 9. Домашнее задание

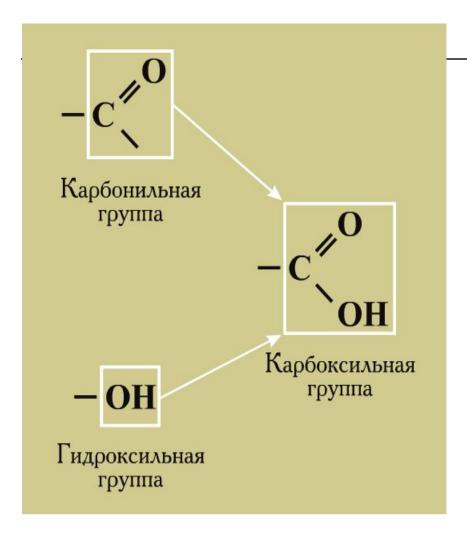
Определение среды

Карбоновые кислоты можно обнаружить с помощью индикатора, также как и неорганические кислоты — серную, соляную и т.д.

Практическая работа


<u>Цель:</u> определить среду карбоновой кислоты с помощью индикатора.

Оборудование: штатив с пробирками, лимонная кислота, щелочь.

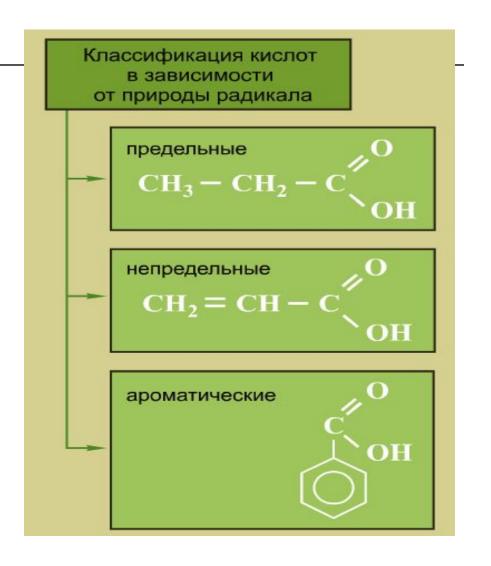

Ход работы:

- -Поместите в пробирку индикатор.
- -Отметьте цвет индикатора.
- -Определите среду.

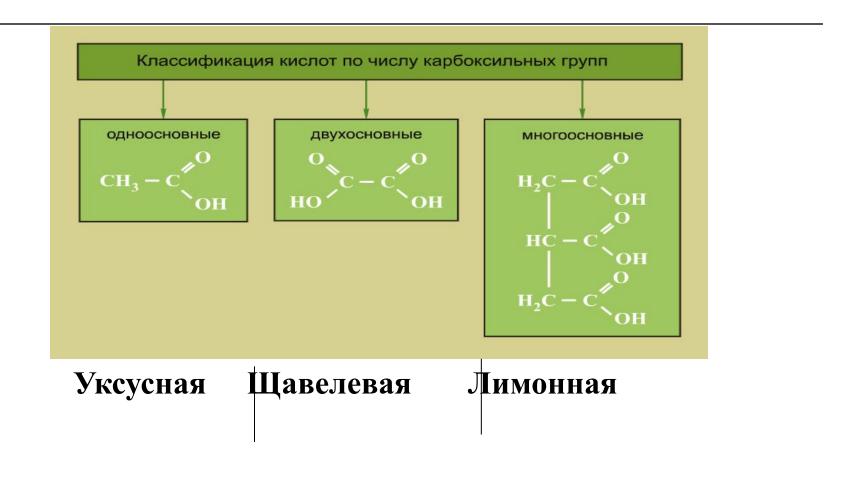
Поместите индикатор в

1. Определение карбоновых кислот

карбоновые кис-лоты — органические вещества, содержащие в молекуле одну или несколько карбоксильных групп


R – (СООН) _m, m – число карбоксильных групп

2. Классификация карбоновых кислот


В зависимости от природы радикала:

- 1.Предельные пропионовая;
- 2.Непредельные акриловая;
- 3. Ароматические бензойная.

2. Классификация карбоновых кислот

3. Природные источники карбоновых кислот

Щавелевая кислота

Валериановая кислота

3. Природные источники карбоновых кислот

Капроновая кислота (в козьем жире)

Пальмитиновая кислота (в пальмовом дереве)

4. Тривиальные названия кислот

Химическая формула	Систематическое название	Тривиальное название
НСООН	Метановая	Муравьиная
CH ₃ COOH	Этановая	Уксусная
CH ₃ (CH ₂) ₂ COOH	Бутановая	Масляная
CH ₃ (CH ₂) ₃ COOH	Гексановая	Капроновая
CH ₃ (CH ₂) ₁₄ COOH	Гексадекановая	Пальмитиновая
нооссоон	Этандиоловая	Щавелевая

5. Предельные одноосновные кислоты

 C_nH_{2n+1} COOH

R - COH

-общая формула

структурная формула

6. Генетический ряд карбоновых кислот

Химическая формула	Систематическое название кислоты	Тривиальное название кислоты
НСООН	Метановая	Муравьиная
CH ₃ COOH	Этановая	Уксусная
CH ₃ CH ₂ COOH	Пропановая	Пропионовая
CH ₃ CH ₂ CH ₂ COOH	Бутановая	Масляная
CH ₃ CH ₂ CH ₂ COOH	Пентановая	Валериановая
$CH_3 - (CH_2)_4 - COOH$	Гексановая	Капроновая
$CH_3 - (CH_2)_5 - COOH$	Гептановая	Энантовая
$CH_3 - (CH_2)_6 - COOH$	Октановая	Каприловая
$CH_3 - (CH_2)_7 - COOH$	Нонановая	Пеларгоновая
$CH_3 - (CH_2)_8 - COOH$	Декановая	Каприновая

7. Изомерия

Структурная изомерия:

- изомерия скелета в углеводородном радикале (начиная c C4)

$$CH_3 - CH_2 - CH_2 - C$$

$$CH_3 - CH_2 - CH_2 - C$$

$$CH_3 - CH - C$$

бутановая кислота 2 — метилпропановая кислота

7. Изомерия

уксусной кислоты

межклассовая изомерия, начиная с С2 (сложные эфиры)

O O

CH₃ − C // H − C //

OH О − CH₃

Уксусная кислота Метиловый эфир

8. Номенклатура

Для определения названия в соответствии с международной номенклатурой придерживаются порядка:

- 1) Выделяют главную цепь.
- 2) Нумеруют цепь, начиная с карбоксильной группы;
- 3) Называют номер атома углерода, при котором находится радикал;
- 4) Называют радикал;
- 5) Называют углеродную цепь;
- 6) Добавляют суффикс овая кислота

8. Номенклатура

2 - метил бутановая кислота

Упражнение

Назовите вещества

(30 секунд)

1)
$$CH_2 - CH_2 - COOH$$

I

CH.

бутановая кислота

2)
$$CH_3$$

$$CH_3 - C - COOH$$

$$I$$

$$CH_3$$

2,2 – диметилпропановая кислота

Упражнение Назовите вещества

(30 секунд)

кислота

пентановая кислота

Упражнение Назовите вещества

(30 секунд)

5)
$$CH_3 - COOH$$

этановая кислота

6) $HOOC - C (CH_3)_2 - CH_2 - CH_3 \\ 2,2 - диметилбутановая кислота$

Домашнее задание

- 1. Для вещества №2 составить все возможные изомеры и 1 гомолог.
- 2. Для вещества №6 составить все возможные изомеры.
- 3. Для вещества №3 составить 3 гомолога.
- 4. Выучить тривиальные названия кислот.
- 5. $\S 20$ ctp. 175 178;

Муравьиная кислота НССОН

- Ее название указывает на источник, из которого эта кислота впервые была выделена. Муравьиная кислота открыта в кислых выделениях рыжих муравьев. Она является одним из компонентов яда, который выделяют жалящие муравьи, а также компонентом жгучей жидкости жалящих гусениц шелкопряда.
- В 1670 г. английский ботаник и зоолог Джон Рей провел необычный эксперимент. Он поместил в сосуд рыжих лесных муравьев, налил воды, нагрел ее до кипения и пропустил через сосуд струю горячего пара. После конденсации пара получился водный раствор, обладавший сильнокислой реакцией. Это и был раствор муравьиной кислоты. В чистом виде муравьиную кислоту впервые получил в 1749 г. Андреас Сигизмунд Маргграф.
- При попадании на кожу кислота не только жжет, но и буквально растворяет ее, оставляя долго не заживающие раны. Вот как вспоминал Карл Фогт химик, работавший вместе с Либихом, один случай. Входит Либих, у него в руках склянка с притертой пробкой. «Ну-ка, обнажите руку», говорит он Фогту и влажной пробкой прикасается к руке. «Не правда ли, жжет? невозмутимо спрашивает Либих. Я только что добыл безводную муравьиную кислоту». После этого «эксперимента» у Фогта остался на всю жизнь белый шрам на руке. И неудивительно впоследствии ученые открыли способность безводной муравьиной кислоты растворять даже капрон, найлон и другие полимеры, устойчивые к разбавленным растворам неорганических кислот и щелочей.

Муравьиная кислота в природе

Муравьиная кислота служит насекомым своеобразным «химическим оружием» для защиты и нападения. Ожог от укусов муравьев очень напоминает ожог крапивой – ведь муравьиная кислота содержится и в тончайших волосках этого весьма распространенного растения. Вонзаясь при соприкосновении в кожу, они сразу же обламываются, а содержимое болезненно ИХ обжигает. Муравьиная кислота также присутствует в пчелином яде, сосновой хвое, в небольших количествах найдена в различных фруктах, тканях, органах, выделениях животных и человека.

Почему нельзя смачивать водой место муравьиного укуса или ожога крапивой?

Это приводит только к усилению болевых ощущений. Почему боль утихает, если пораненное место смочить нашатырным спиртом? Что еще можно использовать в данном случае?

Поскольку муравьиная кислота — электролит, то при ее растворении в воде происходит процесс электролитической диссоциации:

 $HCOOH = HCOO^- + H^+$.

В результате кислотность среды повышается, и процесс разъедания кожи усиливается. Чтобы боль утихла, нужно нейтрализовать кислоту, для чего необходимо использовать растворы, обладающие щелочной реакцией. А к ним как раз и относится нашатырный спирт — водный раствор аммиака, содержащий гидроксид аммония NH₄OH. При его взаимодействии с муравьиной кислотой происходит реакция нейтрализации:

 $HCOOH + NH_4OH = HCOONH_4 + H_2O.$

Для тех же целей вполне подойдет и водный раствор имеющейся в каждом доме питьевой соды — гидрокарбоната натрия NaHCO₃:

Уксусная кислота СН₃СООН

Как вам известно, водный разбавленный раствор этого вещества называется уксусом. Слово «уксус» происходит от греческого слова «охуѕ», означающего «кислый». В древности уксус был единственной пищевой кислотой, получаемой при скисании виноградного вина, и это объясняет, что его название древними греками отождествлялось с самим представлением о кислом, кислоте.

России уксус называли «кислой влажностью» или «древесной кислотой». Последнее название связано с получением уксусной кислоты при сухой перегонке древесины лиственных пород, прежде всего березы. В 1793 г. президент Российской академии наук Андрей Андреевич Нартов (сын механика — учителя Петра I) сообщил, что «кислая влажность из дровяных куч в уголь пережигаемых» может быть использована для травления меди и железа.

Получение уксуса при сухой перегонке древесины описано в сочинениях Иоганна Глаубера и Роберта Бойля. Однако природа этого вещества вплоть до XIX в. оставалась неизвестной. Алхимики считали, что при брожении вина винный (по современной номенклатуре – этиловый) спирт превращается в уксус, принимая на себя частицы соли – винного

Еще в XVIII в. брожение объясняли соединением кислых и горючих начал вина. Лишь в 1814 г. Йенс Якоб Берцелиус определил состав уксусной кислоты, а в 1845 г. немецкий химик Адольф Вильгельм Герман Кольбе осуществил полный ее синтез из угля. Впервые в мире кристаллы уксусной кислоты получил в 1793 г. академик Петербургской академии наук Товий Егорович Ловиц. Он назвал их «ледяным уксусом», или «ледяной кислотой», и описал запах и вкус этих кристаллов так: «Запах расплавленного ледяного уксуса резкий, невыносимый для носа. Вкус очень кислый. Одна капля этого уксуса на язык боль, ощутимую в течение двадцати

Это интересно...

Во времена Ловица химики кроме состава и описания внешнего вида вещества устанавливали его запах и вкус. Неудивительно, что ожоги слизистой оболочки носа и ротовой полости, отравления и другие травмы постоянно сопровождали работу химиков и делали ее очень опасной. В 1800 г. Ловиц нечаянно пролил концентрированную кислоту на стол. Собирая кислоту уксусную фильтровальной бумагой, ученый выжимал ее пальцами над стаканом. Вскоре он заметил, что пальцы потеряли чувствительность, побелели и распухли. Через несколько дней кожа на пальцах стала лопаться и отваливаться большими и толстыми кусками. Полученная травма навела Ловица на мысль использовать концентрированную уксусную кислоту для выведения мозолей. Еще одна опасность уксусной кислоты заключается в том, что вдыхание человеком ее паров может привести к отеку горла.

Щавелевая кислота НООС-СООН

получена впервые в 1773 г. Совари из кисличной соли (кислая щавелево-калиевая соль); Бергман получил ее окислением сахара азотной кислотой и описал под именем сахарной кислоты; Впервые щавелевая кислота синтезирована в 1824 году немецким химиком Фридрихом Вёлером из дициана.

В природе содержится в щавеле, ревене, карамболе и некоторых других растениях в свободном виде и в виде оксалатов калия и кальция.

Дополнительная литература

- Дмитров Е.Н. Познавательные задачи по органической химии и их решения. Тула: Арктоус, 1996, с. 45;
- *Казеннова Н.Б.* Справочник школьника по органической химии. М.: Аквариум, 1997, с. 16–17, 155–156, 243–245;
- *Малышкина В.* Занимательная химия. СПб.: Тригон, 1998, с. 323–325;
- *Степин Б.Д., Аликберова Л.Ю.* Книга по химии для домашнего чтения. М.: Химия, 1995, с. 50–51, 82, 87, 149–150;
- Энциклопедия для детей. Т. 17. Химия. М.: Аванта+, 2001, с. 353–358.