

В МИРЕ ГАЛАКТИК

«Туманность Андромеды» в направлении неправильной галактики «Магеллановы облака»

Попав в черную дыру ближайшей к «Туманности Андромеды» спиралевидной галактики «Млечный Путь», мы очутились в Солнечной системе

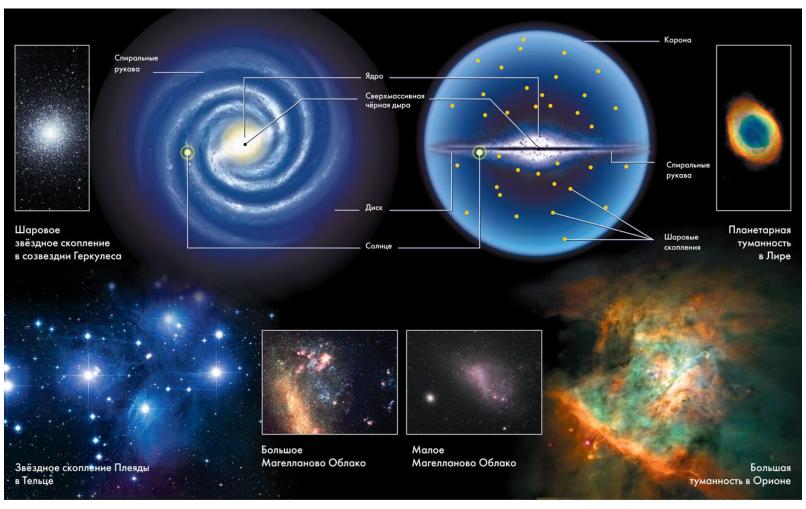
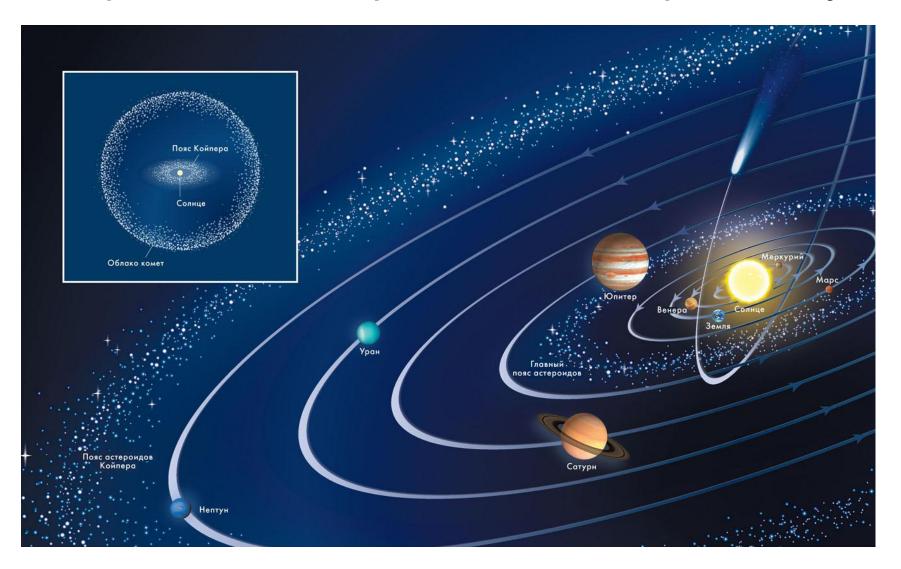



Схема Солнечной системы, на которой изображены Солнце, восемь движущихся вокруг него планет, орбита одной из комет, Главный Пояс астероидов между орбитами Марса и Юпитера, и Пояс астероидов «Пояс Койпера», находящийся за орбитой Нептуна

Ищем анету в солнечной с еме для отдыха и ремонта своего межгалактического корабля

Запрашиваем погоду. Внимание! днём температура на планете будет держаться на отметке +430°C, ночью до -180°C. Вот так перепады! Это происходит потому, что у Меркурия очень тонкая атмосфера (экзосфера) с давлением в 10⁻¹⁴ бар, не способная сохранять нагрев.

И небо там черное, черное.

Поверхность Меркурия оказалась усеянной сеткой из кратеров разных размеров, совсем как поверхность Луны

- Меркурий вращается вокруг своей оси очень медленно. Сутки на нем длятся почти два Земных месяца. А вот по движению вокруг Солнца эта планета - чемпион! Год на Меркурии равен 89-ти земным суткам.
 - Ученые предполагают, что планета Меркурий обладает железным ядром, на которое приходится 80% всей массы этого небесного тела.

агрессивна.

Состоя по большей части из углекислого газа, она поглощает больше солнечной энергии, чем Меркурий. Поэтому на планете еще жарче (парниковый эффект): почти не меняясь с течением года, температура здесь держится в районе 480°С С. Добавьте сюда атмосферное давление 90 атм, которое на Земле можно получить разве что погрузившись в океан на километровую трубину, и отся

Кратеры на поверхности Венеры

ге здесь оказаться.

те здесь оказаться.

атмосферу сажей и

соединениями серы, которые
быстро превращаются в серную
кислоту. Идут кислотные дожди,
которые легко оставили бы раны
на коже и разъели фототехнику
туристов.

• Атмосфера Венеры вращается гораздо быстрее ее самой. На Земле воздух огибает планету почти за год, на Венере – за четыре часа, порождая посто-янный

Прогноз погоды на Венере

Сплошная облачность.

Температура: макс. +470°С, мин. +470°С.

Давление: 90 атмосфер.

Влажность: нулевая.

Ветер: менее 3 миль в час у поверхности,

свыше 220 миль в час на уровне высотных

облаков.

Видимость: полная.

Осадки: не достигают поверхности.

Вероятность грозы: только в облаках.

Данный прогноз верен везде и всегда, поскольку высотные ветры повсеместно удерживают облака.

тепло и воду, на планете давно нет. В итоге на полюсах здесь царит глубокий холод и сохраняются полярные шапки, состоящие, в основном, из «сухого снега» – замерзшего углекислого газа. Близ экватора температура днем может быть около 200 °С, но, впрочем, ночью она все равно упадет на несколько десятков градусов

MAP

- **НИЖЕ НУЛЯ. Атмосфера Марса** состоит из углекислого газа (CO2) 95%, азота (N2) 3% и аргона (Ar).
 - Несмотря на откровенно слабую атмосферу Марса, снеговые бури у его полюсов и пылевые в остальных частях - вовсе не редкость. Самумы, хамсины и прочие изнурительные ветры, несущие пустынные мириады всепро-никающих колючих песчинок, ветры, которыми на Земле сталкиваются лишь в некоторых регионах, здесь могут охватить всю планету, на дней несколько сделав ee

Прогноз погоды на Марсе

Преимущественно солнечно.

Температура: макс. +27°С, мин. — 133°С.

Давление: менее 1% земного (0,01 атмосферы).

Влажность: нулевая.

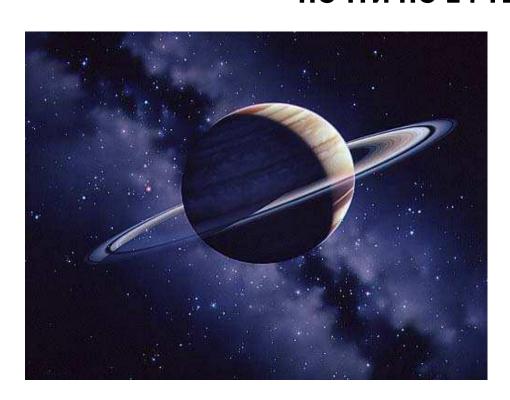
Ветер: постоянно превышает 100 миль в час.

ВИДИМОСТЬ: полная, за

исключением пыльных бурь.

Осадки: снег из углекислого газа близ обоих полюсов.

Вероятность пыльной бури: более высокая в **Южном полушарии летом.**


Данный прогноз зависит от места и времени.

ЮПИТЕРИАНСКИЕ ШТОРМА. Ураганные ветры здесь дуют постоянно, они охватывают всю планету, двигаясь со скоростью под 500 км/ч, причем нередко в противопо-ложных направлениях, что создает на их границах ужа-сающие турбулентные вихри (такие, как Большое красное пятно, или Овал ВА).

Кроме температуры ниже -140 °C и смертельной силы притяжения, нужно не забыть об еще одном факте – на Юпитере негде гулять. Эта планета – газовый гигант, вообще лишенный определенной твердой поверхности. И если б даже какому-то отчаянному скайдайверу удалось нырнуть в его атмосферу, закончил бы он в полуглубине планеты, жидкой где колоссальная гравитация создает материю экзотических форм сверхтекучий скажем,

Заманчив с точки зрения фотоискусства, конечно, Сатурн со своими блистательными кольцами. Особый интерес может представлять необычная буря у северного полюса планеты, имеющая форму почти правильного шестиугольника со сторонами почти по 14 тыс. км.

Но для нормального отды-ха Сатурн совсем не прис-пособлен. общем и це-лом, это такой 📉 же газовый как Юпитер, гигант, только хуже. Атмосфера здесь XOи плотная, а лодная ураганы мест-ные двига-ться МОГУТ

CATY

Не самая далекая, но самая холодная планета во всей Солнечной системе: «столбик термометра» здесь может опускаться до неприятной отметки в -224 °C. Это ненамного теплее абсолютного нуля. Почему-то – возможно, из-за столкновения с каким-то большим телом – Уран вращается лежа на боку (прилег отдохнуть), и северный полюс планеты

повернут в сторону Солнца (98). Помимо мощных

Как и другие газовые гиганты, Нептун – место совсем неспокойное. Бури здесь могут достигать размеров больше всей нашей планеты и двигаться на рекордной известной нам скорости: почти 2500 км/ч. В остальном – это скучное место. Посетить Нептун стоит разве что из-за одного из его спутников – Тритона.

НЕПТУН И

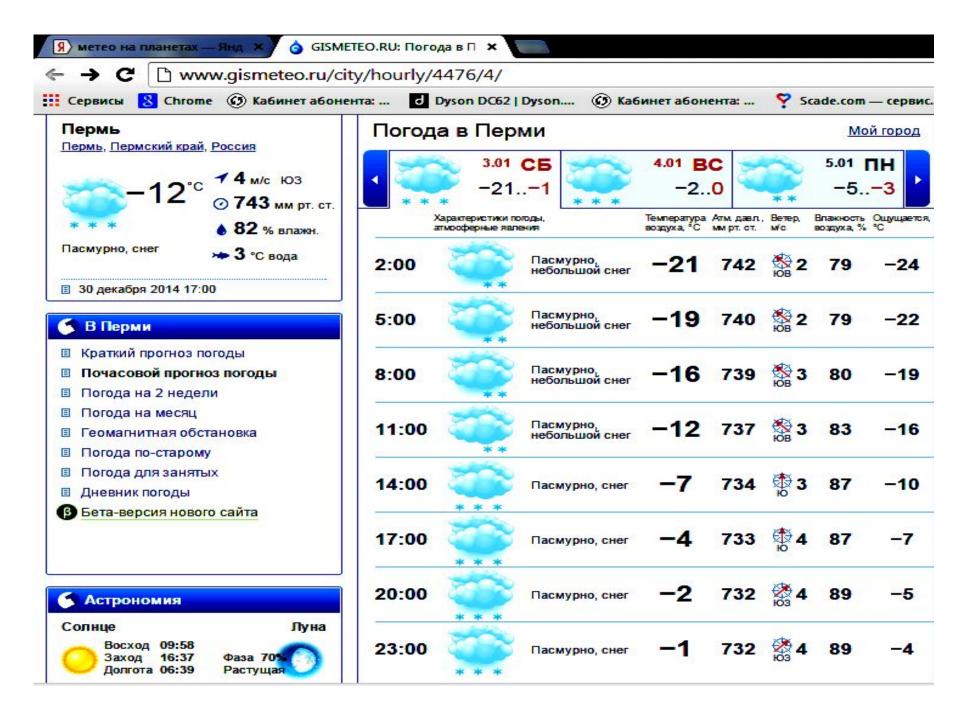
Тритон целом так холоден и однообразен, как планета, но СПУТНИК его сближается медленно Нептуном, и спустя некоторое время будет разорван его гравитацией. Часть обломков упадет на планету, а часть образовать может некое подобие кольца, как у Сатурна. сказать, когда Точно произойдет, пока не получается: где-то через 10 100 млн лет. Так что любителям путешествовать стоит поторо-питься, чтобы Тритон успеть увидеть

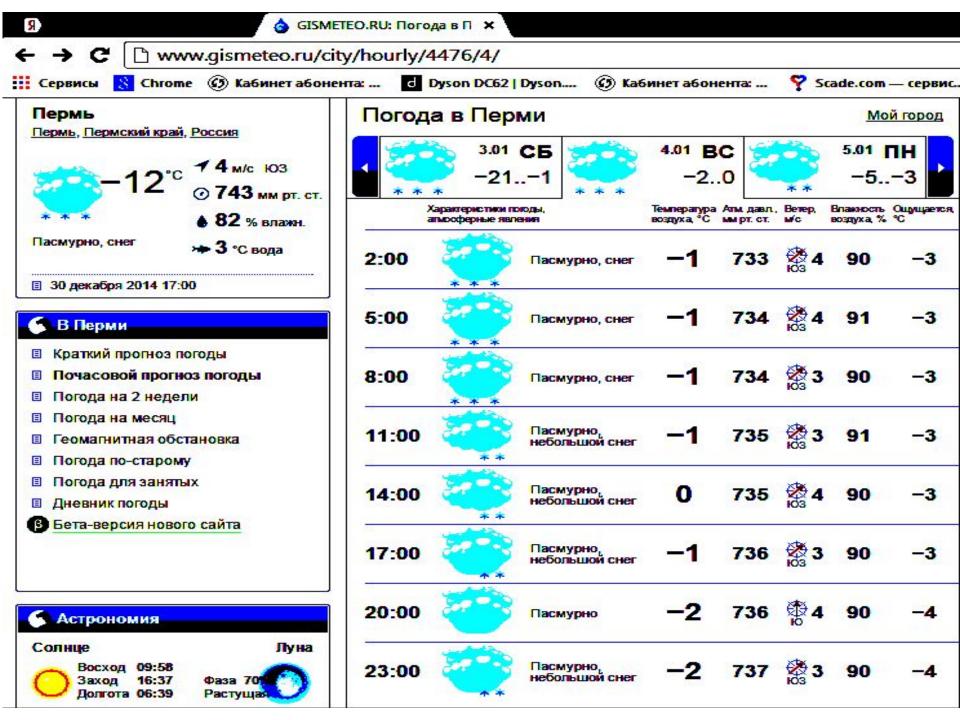
Прогноз погоды на Земле

- Иногда, частично, большей частью, или совершенно ясно, или облачно с меняющейся вероятностью дождя, снега, града, мокрого снега, смерча, урагана...
- Температура: макс. +58°C (пустыня Сахара), мин. —8°C (Антарктида). Самые высокие и самые низкие температуры, зарегистрированные в центральной Европе: 44°C и 39°C, соответственно.
- Давление: 1 атмосфера+/-10%.
- Влажность: *от 0 до 100%*.
- Ветер: *от нуля до 231 мили в час* (возможно, выше при смерче).
- Видимость: от нуля до полной.
- Осадки: от нуля до 523 дюймов воды в год.
- Вероятность грозы: *переменная*.

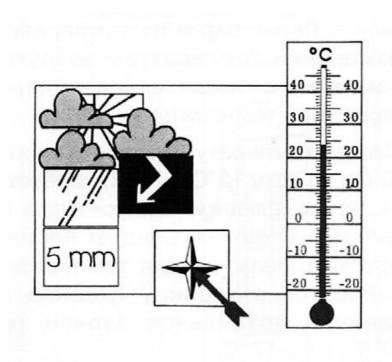
ЗЕМЛЯ

Конкретный прогноз зависит от места и времени В будущем, когда отпуск где-нибудь в окрестностях Юпитера будет таким же обычным делом, как сегодня – на египетском пляже, главным туристическим центром все равно останется Земля. Причина этому проста: здесь всегда хорошая погода. А вот на других


Встреча и общение ЗЕМЛЯН С инопланетным РОБОТОМ



Вопросы Землян Роботу и его ответы:


- Как тебя зовут? Электрон;
- Откуда ты прилетел? Из туманности Андромеды;
- С какой целью ты прилетел на планету? Мне нужно как можно больше узнать о планете Земля;
- **Чем ты питаешься?** Исключительно батарейками;
- Сколько тебе лет? В соответствии с вашим временем мне 7 лет.
- На планете робота новый год не отмечают. Там год длится по нашим земным часам 2 часа (оборот вокруг звезды).
- Давайте подсчитаем ваш возраст на той далекой планете и на разных планетах солнечной системы.

ИЗ ЧЕГО СКЛАДЫВАЕТСЯ ПОГОДА?

Температура

Облачность

Ветер

Осадки

Тимосферное давлениеВлажность

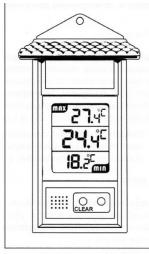
РЕГИСТРАЦИЯ ТЕМПЕРАТУРЫ измеряем температуру:

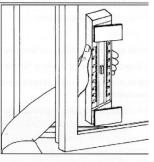
измеряем температуру: воздуха внутри и вне классной комнаты;

воды в контейнерах: холодной и горячей

40 30 выше 0 °С (+, плюс) 20 O°C E10 ниже 0 °C E20 (-, минус)

Наиболее употребительны й прибор – жидкостный термометр, заполненный спиртом или ртутью. Самая распространенн ая шкала – Цельсия, по которой точка замерзания воды – 0 °С, а точка кипения 100 °C


Материалы: один термометр от -25 °C до 50 °C; контейнеры


• Термометр должен быть защищен: от солнечного света и воды, от Земли (на метеостанциях на уровне 2м над землей, не ближе 10 м от строений.

Использование максимальноминимального цифрового

Термометра

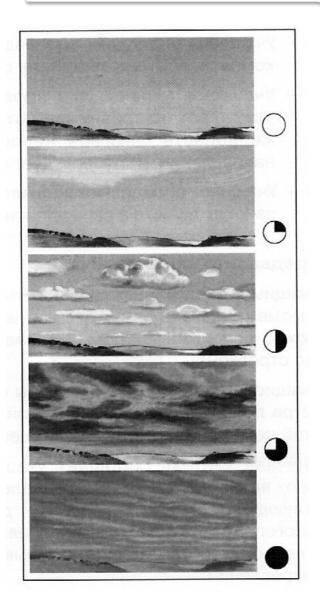
Минимальный период измерений
при ежедневной регистрации – 24
часа

Центральный дисплей отображает показания текущей температуры, верхний дисплей – максимальной температуры, а нижний – минимальное показание с момента очистки памяти устройства.

Для очистки памяти необходимо нажать кнопку «Очистить» в нижней части термометра.

С помощью кнопки «C/F», также находящейся в нижней части термометра, можно переключаться между единицами измерения – и °F.

Следует обращаться с термометром с осторожностью (не использовать при экстремальных температурах, не подвергать вибрации и т.д.)


Если сигнал ослабевает, замените батареи.

Максимально-минимальный термометр можно либо повесить на гвоздь, либо прикрепить к окну с помощью застежки велькро («липучек»). (Шкалы должны быть обращены к стеклу.) В комплект включены четыре пары полос велькро, чтобы эксперимент можно было выполнить в нескольких классных комнатах.

Устанавливать максимально-минимальный термометр следует в месте, которое остается в тени на всем протяжении дня. При чтении показаний максимально-минимального термометра желательно следовать таким правилам:

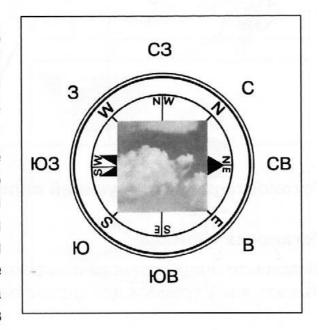
 Не снимая термометр с окна, прочесть текущую температуру и максимальную температуру по максимальной шкале. Оба числа записать.

Определение степени облачности

Обозначения степени облачности:

- 🦳 ясно,
- облачно на четверть,
- облачно наполовину,
- облачно на три четверти,
- пасмурно.
- Оценка количества облаков непростая задача. Нужно вообразить, что облака собраны вместе на небе, и оценить, какая часть неба (в процентах) окажется закрытой.

НАПРАВЛЕНИЕ ВЕТРА

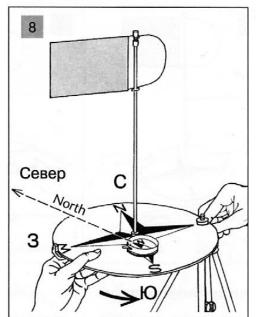

Метод 1

Направление, в котором облака движутся по небу

Направление ветра на уровне облачности может быть определено по направлению, в котором облака движутся по небу. Учащиеся определяют направление на север с помощью компаса и раскладывают большую карту компаса на земле.

Затем они помещают зеркало точно в центр карты. Острие и хвостовая часть («оперение») красной стрелки немного выступают из-под зеркала. Острие стрелки поворачивается в направлении, в котором перемещаются облака (хвостовая часть стрелки поворачивает также и зеркало), и таким образом облегчается чтение направления. Однако направление движения облаков часто не совпадает с направлением ветра у земли (точнее на высоте 10 м), о котором сообщается в официальных сводках погоды. Поэтому, описанный выше метод оценивает направление ветра только на уровне облаков. В этом состоит недостаток данного метода.

Следует одновременно регистрировать направление ветра, облачность и значения температуры.



Направление ветра

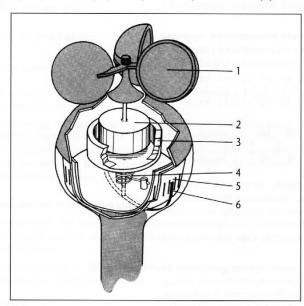
Метод 2

Направление ветра возле земли

Флюгер и маленькая картушка компаса используются для определения направления ветра возле поверхности земли. При выборе места измерений следует избегать участков возле больших зданий или мощных кустарников (из-за возможных отклонений направления ветра, локального завихрения или затишья). Лучше всего, чтобы пункт наблюдения за силой и направлением ветра был тем же самым, что и для регистрации температуры и облачности.

Ветер определяется по делению компаса, соответствующему стороне, откуда он дует. Проволочная дуга флюгера всегда показывает направление, откуда дует ветер, а лопасть. Соответственно, указывает в противоположном направлении.

Материалы: картушка компаса с вращающейся стрелкой, зеркало для наблюдения облаков, флюгер, картушка компаса, тренога (10) с держателем (11), компас с «липучкой» (липкой лентой) на обратной стороне (12), доска для крепления карточек, маленькая картушка компаса из набора карточек с условными обозначениями погоды, пластмассовая стрелка (6).

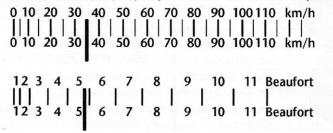

ОПРЕДЕЛЕНИЕ СИЛЫ ВЕТРА анемометром

Измерительный прибор

Кратко объясняется принцип действия анемометра: инструменты этого типа называются по имени их характерных деталей, в данном случае – «чашечный анемометр».

В автомобильном или мотоциклетном спидометре главный компонент — кольцевидный магнит. (Пояснения: магнит, показанный на рисунке, не кольцевидный, а цилиндрический; магнит (2) вращается вместе с ветряными чашами (1)).

Алюминиевый корпус (3) механически не связан с магнитом, однако вращение передается переменным полем вращающегося магнита. Спиральная пружина (4) прерывает это движение. Алюминиевый корпус поворачивается только на небольшой угол, следовательно, чем сильнее повернется корпус, тем больше скорость и вращающий момент магнита. Двухконечный указатель индикатора (6) внутри алюминиевого корпуса указывает текущую скорость ветра по шкале (5).



Материалы: флюгер, анемометр (13) с треногой (10) или без нее.

Дополнительно: фен.

Шкала скорости ветра — регулярная линейно проградуированная шкала: определенное значение скорости приписано каждому делению шкалы (на рисунке показана скорость 35 км/ч).

Шкала Бофорта (Beaufort) — шкала диапазонов, причем целый диапазон соответствует некоторому (одному) значению силы ветра (на рисунке показана сила ветра 5).

- ветровые чаши
- (2) магнит
- (3) аллюминиевый корпус
- (4) спиральная пружина
- (5) шкала
- (6) указатель индикатора

Сила ветра

- O TUXO
- умеренный ветер
- **—** сильный ветер
- —○ штормовой ветер

Условные обозначения

блачность	Сила ветра					
ясно	Условное обозначение	Сила ветра	Определение явления	Скорость в км/ч	Действие ветра (на суше)	
облачно на четверть	0	0	Отсутствие ветра	О	Безветрие. Дым поднимается вертикально.	
облачно наполовину	<u> </u>	1	Легкий ветер	1–5	Направление ветра заметно по относу дыма, но не по флюгеру.	
облачно на три четверти пасмурно		2	Незначительный ветер	6–11	Движение ветра ощущается лицом, шелестят листья, приводится в движение флюгер.	
	~	3	Слабый ветер	12–19	Листья и тонкие ветви деревьев всё время колышутся, ветер развевает лёгкие флаги.	
садки	~	4	Умеренный ветер	20-28	Ветер поднимает пыль и мусор, приводит в движение тонкие ветви деревьев.	
Дождь← Снег	"	5	Свежий ветер	29–38	Начинают раскачиваться небольшие лиственные деревья на внутренних водоемах появляются барашки.	
Моросящий дождь Град	~	6	Сильный ветер	39–49	Качаются толстые сучья деревьев, гудят провода, ветер вырывает зонты.	
O O KHENE	w	7	Близкий к буре ветер	50—61	Качаются стволы деревьев, идто против ветра довольно трудно.	
∑ Крупный град ➤ Роса	<i>'''</i>	8	Буря	62-74	Ветер ломает сучья деревьев, идти против ветра очень трудно	
⊔ Иней = Туман	<i>'''</i>	9	Сильная буря	75—88	Небольшие повреждения строений (ветер начинает разрушать крыши).	
Добавление этого 7 значка означает		10	Штормовой ветер	89–102	На суше наблюдается редко, ветер вырывает деревья с корнем, значительные разрушения строений.	
«ливень» 7 Ливневый дождь	8336	11	Сильный штормовой ветер	103–117	Наблюдается очень редко, большие разрушения на значительном пространстве.	
₹ Гроза		12	Ураган	118 и более	Очень серьезные разрушения.	

Определение скорости ветра по шкале Бофорта

Если вы хотите узнать скорость ветра, а под рукой нет анемометра, попробуйте сделать это с помощью шкалы Бофорта. Её разработал в 1805 году офицер военно-морского флота Англии сэр Френсис Бофорт. Эта шкала была создана для того, чтобы приблизительно оценить скорость ветра, наблюдая за различными предметами.

Баллы	Признаки	Скорость ветра	Описание признаков Дым поднимается вертикально вверх	
0	{ } }	менее 1 км/ч		
1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1—5 км/ч	Дым наклонен в направлении ветра	
2	R	6—11 км/ч	Лицо чувствует ветер; флюгер поворачивается	
3	MI	12—19 км/ч	Флажки и листья на деревьях колышутся	
4	-	20—28 км/ч	Бумага и листья подни- маются в воздух; ветки деревьев раскачиваются	
5	9	29—38 км/ч	Небольшие деревья гнутся	
6	3	39—49 км/ч	Трудно удержать в руках зонт; раскачиваются крупные сучья на деревьях	
7		50—61 км/ч	Качаются деревья; трудно идти против ветра	
8	150	62—74 км/ч	Ветер обламывает ветки с деревьев	
9	0	75—88 км/ч	Мелкие повреждения зданий; сносит черепицы с крыш	
10	2	89—102 км/ч	Более сорьёзные повреж дения зданий; ветер вы- рывает деревья с корнем	
11	E Char	103—118 км/ч ШТОРМ	Повсеместные серьёзные разрушения	
12	Con The Control	119 км/ч УРАГАН	Полное разрушение и опустошение местности	

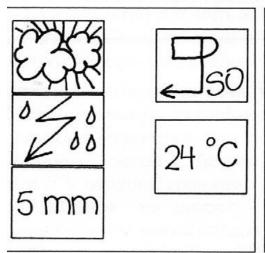
ОСАДКИ

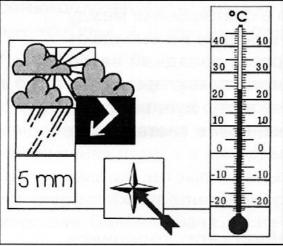
дождь
 ★ снег
 _ иней
 _ роса
 _ Крупный град
 _ Град
 _ Гроза
 ✓ Добавление этого значка указывает на ливень
 _ Таким образом получается условное обозначение на ливень

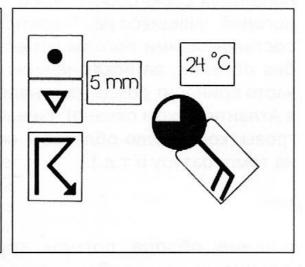
Также метеорологами ежедневно измеряется и регистрируется количество осадков, выпадающих на землю. Уровень дождевых осадков определяется с помощью измерителя осадков. Количество осадков может быть рассчитано, исходя из уровня воды в измерителе.

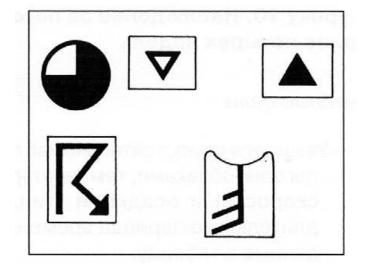
Уровень осадков определяет количество дождя или воды, образующейся из тающегося снега, града и т.п. на ровной земле, при условии, что вода не может стекать кудалибо, просачиваться в почву или испаряться. Уровень осадков измеряется в миллиметрах, а количество осадков рассчитывается в литрах на квадратный метр поверхности почвы (π/m^2) .

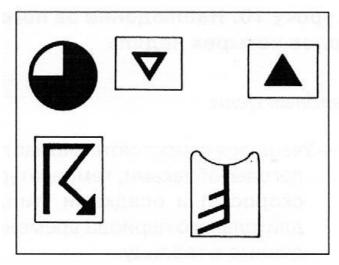
Поэтому уровень осадков, равный 1мм, означает, что каждый квадратный миллиметр (мм^2) поверхности земли несет кубический миллиметр (мм^3) дождевой воды.

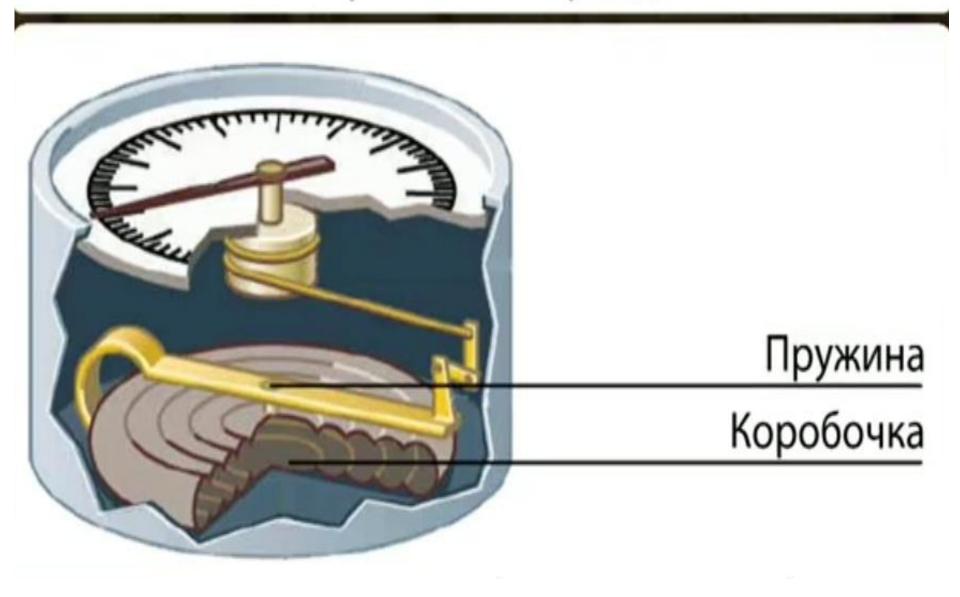

 $1~\text{м}^2=1\,000\,000~\text{мm}^2$. Следовательно, один квадратный метр несет $1\,000\,000~\text{мm}^3$ дождевых осадков, то есть $1\,000~\text{сm}^3$ или 1~литр. Таким образом, уровень 1~мм соответствует количеству осадков $1~\text{л/m}^2$.


Числовые значения уровня осадков (в мм) и количество осадков (в л/м²) идентичны. В зависимости от того, маленькие или большие площади поверхности, на них выпадает соответственно маленькое или большое количество дождя; однако, уровень осадков (1 мм) не зависит от площади поверхности. Поэтому уровень осадков может быть измерен с помощью любой цилиндрической емкости, которая имеет миллиметровую шкалу.


Следует принять особые меры, чтобы предотвратить попадание с дождем в измеряющее устройство грязной воды. По этой причине измеритель осадков на метеорологических станциях размещается на уровне приблизительно 1 м над землей. Чтобы на уровень осадков не влияли окружающие предметы, измеритель осадков должен быть установлен далеко от помех (здания, деревья) — так, чтобы минимальное расстояние до них было равным их высоте.


Различные возможности представления одного и того же


состояния поголы



Устройство ртутного барометра

Устройство анероида

