3.16. Устойчивость объектов

Устойчивость объекта - это его способность противостоять поражающим факторам ЧС, сохраняя эксплуатационные функции и обеспечивая защиту персонала и населения.

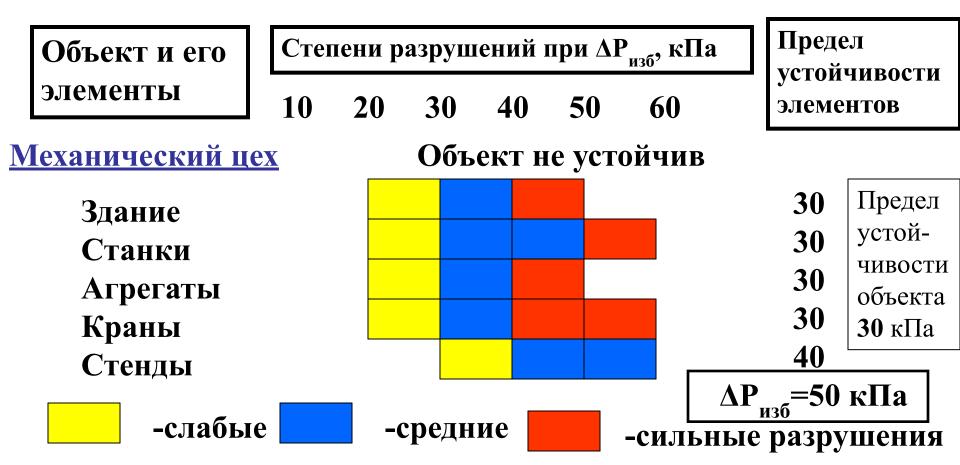
Рассматривают устойчивость к механическим параметрам, тепловому (световому) излучению, химическому заражению (поражению), радиоактивному заражению (облучению).

Исследования устойчивости объектов

<u>1 этап.</u> Анализ структуры объекта и оценка его наиболее слабых неустойчивых элементов.

2 этап. Разработка основных мероприятий по повышению устойчивости работы объекта в условиях действия характерных поражающих факторов.

Устойчивость объекта от взрыва


Разрушение объектов ударной волной делят на четыре степени: **слабые, средние, сильные и полные**. При сильных и полных разрушениях объекты восстановлению не подлежат.

В первой и второй зонах взрыва объекты разрушаются полностью.

<u>Радиус поражения</u> - это расстояние от центра взрыва до зон, в пределах которых объект подвергается избыточным давлениям во фронте ударной волны, соответствующим слабым, средним, сильным и полным разрушениям.

Оценка устойчивости заключается в определении степени устойчивости элементов и объекта в целом, посредством построения номограммы устойчивости.

Номограмма устойчивости объекта

Предел устойчивости элемента выбирается по минимальному значению средних разрушений, а предел устойчивости объекта как минимальное значение из пределов устойчивости элементов. Эта величина сравнивается с избыточным давлением.

Устойчивость объекта (продолжение) <u>Химическое заражение</u>

Оценка устойчивости включает: определение времени, в течение которого территория будет опасна для людей, анализ химической обстановки, расчёт объёма защиты персонала.

Предел устойчивости объекта к химическому заражению пороговая токсодоза Д, приводящая к появлению начальных признаков поражения.

<u>Радиоактивное заражение</u>

Анализ радиоактивной обстановки на территории объекта и определение доз облучения персонала.

Предел устойчивости объекта к радиоактивному заражению - это предельное значение уровня радиации, при котором персонал не получит дозу выше установленной.

Если значение опасного фактора **ЧС** превышает предельную величину, то разрабатываются мероприятия по повышению устойчивости объекта.

- 1. Предотвращение причин возникновения **ЧС** (отказ от потенциально опасного оборудования, внедрение новых технологий).
- 2. Предотвращение ЧС (блокирующие устройства, системы автоматики).
- 3. Уменьшение последствий **ЧС** (повышение прочности, огнестойкости конструкций).
- 4. Защита временем, расстоянием, применение СИЗ.

Для опасных производств составляется Декларация безопасности

3.17. Природные ЧС

Расчёт радиусов поражения от взрывчатых веществ

3.17. Общая характеристика ЧС природного происхождения

<u>Справка</u>

Ущерб от природных ЧС составляет:

Наводнения - 40 %. Ураганы - 20 %. Землетрясения - 15 %,

Засухи - 15 %.

Пожары - 10 %.

Число природных ЧС почти не растёт, но человеческие жертвы и материальный ущерб увеличиваются.

По данным **ООН** за последние 20 лет от стихийных бедствий погибло 3 млн человек, а 800 млн человек остались без крова.

Риск гибели человека от природных ЧС составляет 10-5 за год.

Особенности стихийных бедствий

- 1. Характерна определённая пространственная приуроченность.
- 2. Чем больше интенсивность опасного явления, тем реже оно случается.
- 3. Каждому виду опасности часто предшествуют некоторые признаки (предвестники).
- **4.** При всей неожиданности природных **ЧС** они могут быть предсказаны.
- **5.** Для уменьшения влияния негативных факторов природных **ЧС** возможно предусмотреть активные и пассивные защитные мероприятия.
- 6. На проявление природных опасностей большое влияние может оказывать антропогенный фактор.
- 7. Между природными явлениями существует связь.

Классификация природных ЧС

Природные ЧС делят на три группы:

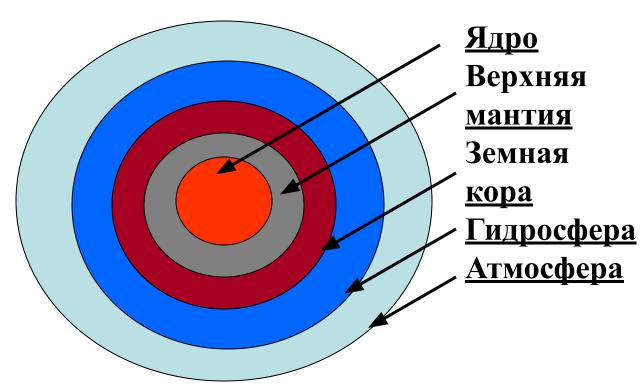
- 1. Литосферные (землетрясения, сели, лавины, извержение вулканов, оползни).
- 2. Гидросферные (наводнения, цунами, штормы).
- 3. Атмосферные (ураганы, бури, смерчи, молнии, гололёд, град, ливень, снегопад, туман).

Главной предпосылкой эффективной защиты является своевременный прогноз.

Активная защита - строительство инженерно-технических сооружений.

<u>Пассивная защита</u> - использование укрытий и средств индивидуальной защиты (СИЗ).

Эвакуация населения из зоны ЧС.


3.18. Литосферные опасности

1 3.18. Литосферные опасности

Землетрясения

Земля состоит из нескольких оболочек-геосфер.

Мантия и земная кора образуют <u>Литосферу</u>

Температура в мантии считается равной $2000 - 2500^{0}$ С, а давление - до $130 \, \Gamma \text{H/m}^{2}$. В мантии происходят процессы, вызывающие землетрясения.

Землетрясения

Справка

Страна и год

Число погибших

Энергия по шкале Рихтера

Китай, 1976	242 000	8,2
Китай, 1927	200 000	8,3
СССР(Ашхабад),1948	110 000	7,3
Китай, 1920	110 000	8,6
Япония, 1923	100 000	8,3
Италия, 1908	83 000	7,5
Китай, 1923	70 000	7,6
Перу, 1970	66 800	7,7
Иран, 1990	50 000	7,5
Турция, 1930	30 000	7,9
Индия, 1935	30 000	7,5
СССР (Армения),1988	25 000	7,9

Землетрясения (продолжение)

Землетрясение - это подземные толчки и колебания земной поверхности, возникающие в результате внезапных смещений и разрывов в земной коре или в верхней части мантии и передающиеся на большие расстояния в виде упругих волн.

Серия подземных толчков включает: форшоки, главный толчок и афтершоки.

Очаг землетрясения - объём в толще Земли, где высвобождается максимальная энергия.

Центр очага - <u>гипоцентр</u>, а проекция гипоцентра на поверхность Земли называется <u>эпицентром</u>.

Оценка землетрясения

Землетрясение оценивается по его энергии и интенсивности разрушений на поверхности Земли.

Рихтер предложил характеризовать энергию землетрясения магнитудой - условной величиной, отображающей общую энергию упругих колебаний. Энергия землетрясения **Е** связана с магнитудой **М** соотношением:

$$\lg E = 4 + 1,6M$$

При землетрясении, для которого M = 5, энергия - 10^{12} Дж.

По сейсмической шкале **Рихтера** самому сильному землетрясению соответствует магнитуда 9.

Магнитуда позволяет сравнивать источники колебаний по их энергии.

Оценка землетрясения (продолжение)

Сила землетрясения на поверхности земли оценивается по 12-бальной шкале. Даётся наименование землетрясения и возможные последствия.

Рассматривают землетрясения: умеренные (4 балла), довольно сильные(5), сильные (6), очень сильные (7), разрушительные (8), опустошительные (9), уничтожающие (10), катастрофические (11), сильные катастрофические (12).

Магнитуда, сила землетрясения в баллах и глубина очага связаны между собой.

Например, для катастрофического землетрясения (11 баллов) магнитуда равна 8; характерно полное разрушение зданий, обвалы, оползни, трещины, обрушение подземных сооружений.

Действия населения при землетрясении Получен сигнал об угрозе землетрясения

- 1. Отключить газ, воду, электроэнергию, оповестить соседей, взять с собой необходимые вещи, документы, деньги, воду, продукты, закрыть квартиру и выйти на улицу.
- 2. Выбрать место вдали от зданий и линий электропередач и ждать получения новой информации.

Внезапное землетрясение

- 1. При первом толчке постараться немедленно покинуть здание в течение 15 20 секунд по лестнице или через окна первого этажа.
- 2. Если вы остались в квартире надо встать в дверной проём или в угол комнаты у капитальной стены подальше от окон, шкафов.
- 3. Как только стихнут толчки надо немедленно покинуть здание по лестнице, прижимаясь спиной к стене, и если есть возможность выключить коммуникации и взять с собой необходимые вещи.

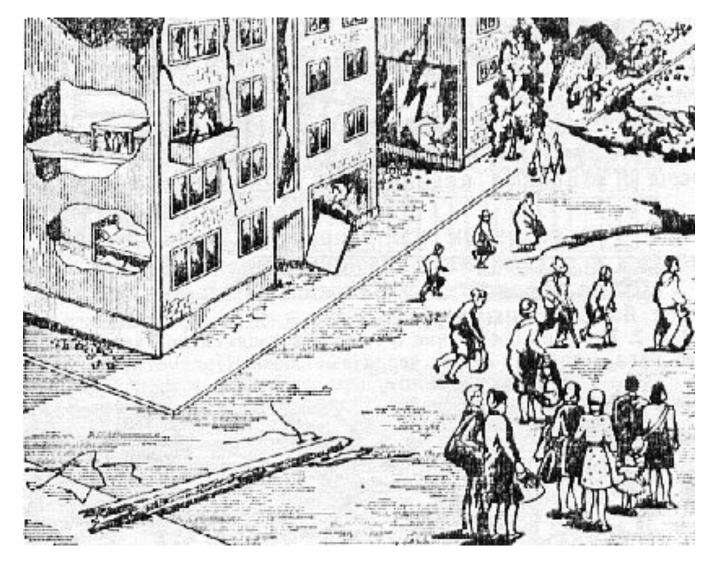


Рис. 61 При землетрясении необходимо покинуть здание и занять место вдали от объектов, грозящих обвалом

3.19. Гидросферные опасности

3.19. Гидросферные опасности

Наводнения

В зависимости от причин возникновения различают шесть типов наводнений:

- 1. Половодье периодически повторяющийся подъём уровня воды, вызванный весенним таянием снега.
- 2. <u>Паводок</u> периодический кратковременный подъём уровня воды в реке, вызванный обильными дождями.
- 3. <u>Затор</u> нагромождение льдин во время весеннего ледохода, вызывающий подъём уровня воды.
- 4. <u>Зажор</u> скопление рыхлого льда во время ледостава в сужениях и излучинах русла реки, вызывающий подъём уровня воды.

Типы наводнений (продолжение)

- 5. <u>Ветровой нагон</u> подъём уровня воды, вызванный воздействием ветра на водную поверхность, обычно происходящий в морских руслах крупных рек.
- 6. Наводнения при прорывах плотин это значительный подъём уровня воды, вызванный разрушением плотины или дамбы, а также в горных районах при оползнях, обвалах, движении ледников.

Основной поражающий фактор наводнения - поток воды, высоких уровней, а при прорывах плотин и дамб - значительные скорости течения.

<u>Вторичные поражающие факторы</u> - пожары, оползни, обвалы, обрушение зданий и сооружений, заражение природной среды ядовитыми веществами, загрязнение питьевой воды.

Группы наводнений

По повторяемости, масштабам и суммарному ущербу наводнения делят на четыре группы:

- 1. Низкие (малые) наводнения наблюдаются в основном на равнинных реках, повторяются примерно один раз в 5 10 лет; при таких наводнениях затопляются сельскохозяйственные угодья; они имеют сравнительно небольшой материальный ущерб.
- 2. Высокие наводнения характерны затоплением больших территорий; повторяемость один раз в 20 25 лет; наносят ощутимый материальный ущерб.
- 3. Выдающиеся наводнения охватывают целые речные бассейны, парализуют хозяйственную деятельность, наносят большой материальный ущерб, требуют массовой эвакуации населения; повторяемость один раз в 50 100 лет.
- 4. <u>Катастрофические наводнения</u> полностью парализуют хозяйственную деятельность населения, приводят к гибели людей и огромным материальным потерям.

Наводнения

Справка

1970 г. В районе прибрежной полосы Бенгальского залива мощная нагонная волна, возникшая от урагана, накрыла густонаселённые острова. Погибло около **800 тыс. человек.** Возникла эпидемия холеры и брюшного тифа.

1976 г. В Пакистане от наводнения погиб 1 млн чел.

1953 г. В Голландии при прорыве дамбы погибло 18 тыс.чел.

1824 г. В Санкт-Петербурге во время наводнения было разрушено **3 тыс. домов**, погибло **600 человек.**

1996 г. Ливневые дожди нанесли огромный ущерб отдельным районам Бурятии, Дагестана, Татарстана, Приморского и Хабаровского края.

Действия населения при наводнении

Получено сообщение об угрозе затопления

- 1. Если есть запас времени, то необходимо отключить воду, газ, электричество, потушить горящие печи отопления, перенести на верхние этажи зданий (чердаки) ценные предметы и вещи.
- 2. Затем надо выйти в безопасное место на возвышенность, на чердаки или крыши зданий, взяв с собой документы, деньги, комплект одежды и обуви, запас продуктов. При необходимости используются подручные плавающие средства.
- 3. Оказавшись в воде надо сбросить тяжёлую одежду и обувь и использовать плавающие поблизости предметы.

Внезапное наводнение

Необходимо быстро занять безопасное возвышенное место, не поддаваться панике, принять меры для своевременного обнаружения спасателями.

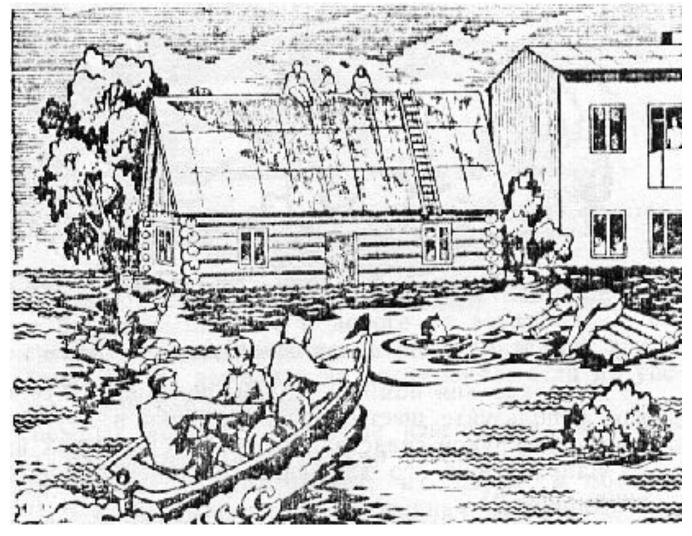


Рис. 62 При наводнении надо принять меры к спасению имущества т.е. перенести его на возвышенное место, а самим занять верхние этажи зданий или чердаки.

3.18. Атмосферные опасности

Общие сведения

Неравномерность нагревания поверхности Земли способствует общей циркуляции атмосферы. Атмосферное давление распределяется неравномерно, что приводит к движению воздуха относительно Земли (ветер) от высокого давления к низкому.

Циклон - это область пониженного давления. Погода при циклоне пасмурная с сильным ветром.

Антициклон - это область повышенного давления. Погода при этом малооблачная, сухая, со слабыми ветрами.

В результате естественных процессов в атмосфере наблюдаются явления опасные для человека: туман, гололёд, молнии, ураганы, бури, смерчи, ливни.

Характеристика ветровых опасностей

Буря - ветер, скорость которого составляет 20 - 30 м/с или 70 - 105 км/ч. Буря может наблюдаться при прохождении циклона или смерча. Различают беспыльные, песчаные и снежные бури. На море бурю называют штормом.

Ураган возникает, когда скорость ветра превышает 32 м/с (115 км/ч), обладает большой кинетической энергией: ломает деревья, переворачивает автомобили, разрушает строения. Скоростной напор урагана обладает метательным действием.

Смерч - атмосферный вихрь, возникающий в грозовом облаке и распространяющийся в виде рукава или хобота до высоты 1500 м. Воздух вращается, и одновременно поднимаясь, втягивает пыль, воду, предметы, бросает их вверх и переносит на большие расстояния. Разрушение строений происходит вследствие резких перепадов давлений.

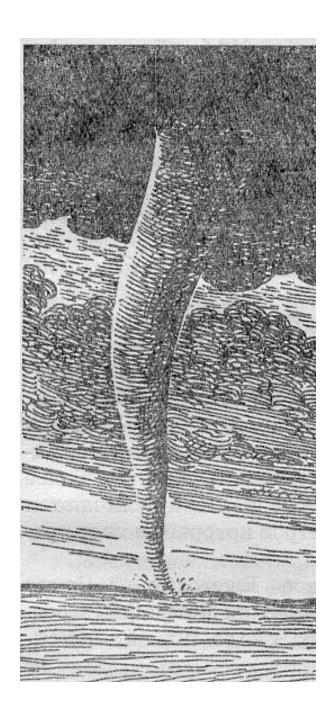


Рис. 63 Типичная хоботообразная мощная воронка смерча, ещё не коснувшаяся земли; Небраска, 1930 г.

Характеристика ветровых опасностей (продолжение)

Диаметр **смерча** над морем измеряется десятками метров, а над сушей - сотнями метров. Смерч возникает в тёплом секторе циклона и движется вместе с ним со скоростью 10 - 20 м/с. Он проходит путь длиной до 60 км и сопровождается грозой, дождём, градом. Если смерч достигнет поверхности земли, то он производит большие разрушения.

Для визуальной оценки скорости ветра в баллах по его действию на волнение в море и на наземные объекты используют шкалу Бофорта (0 - 12 баллов).

Баллы Бофорта	Скорость ветра, м/с	Действие ветра
0	0 - 0,2 (штиль)	Катастрофические
12	более 32 (ураган)	разрушения

Справка

На территории России количество ураганов, шквалов, смерчей:

1995 г. - 53

1996 г. **- 98**.

В 1996 г. ураганы прошли по территории 17 субъектов РФ.

Мордовская республика - ущерб 20 млрд руб.

Чувашская республика - ущерб 34 млрд руб.

Воронежская область - ущерб 30 млрд руб.

Дальневосточный регион - разрушен магистральный водовод, линии электропередач и связи, повреждены здания.

1996 г. - тайфун на Сахалине. Затоплены и повреждены дома, склады, разрушены ЛЭП, водоводы; ущерб - **67**млрд руб

Действия населения при урагане

Получено сообщение о приближающемся урагане

- 1. Плотно закрыть двери, окна (ставни), чердачные люки; с крыш, лоджий и балконов убрать предметы, которые порывами ветра могут быть сброшены вниз.
- 2. Предметы, находящиеся во дворах надёжно закрепить, потушить огонь в печах.
- 3. Укрыться в заглублённом помещении или в естественном укрытии.

Шквальный ветер или ураган застал Вас на улице

- 1. Укрыться в ближайшем прочном здании, заглублённом помещении, естественном укрытии.
- 2. Так как ураган часто сопровождается грозой, нельзя укрываться под отдельно стоящими деревьями и подходить к опорам ЛЭП.

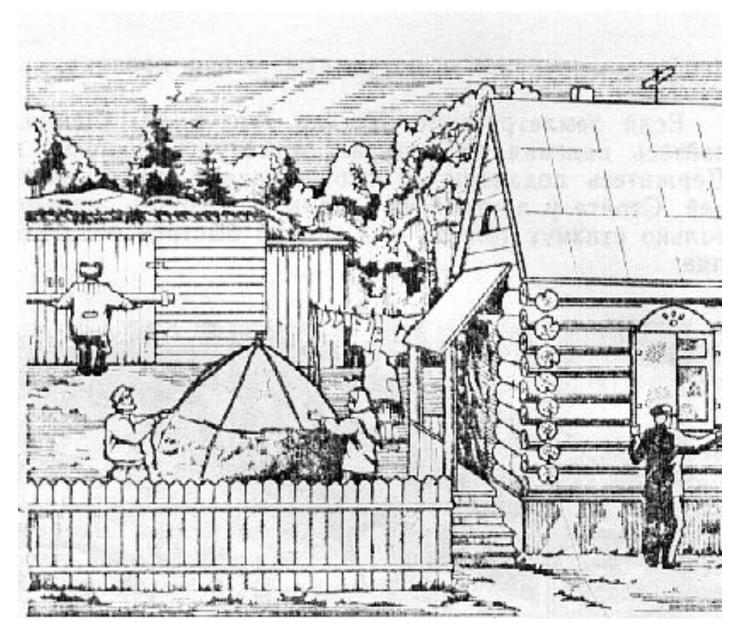


Рис. 64 Действия при надвигающемся урагане

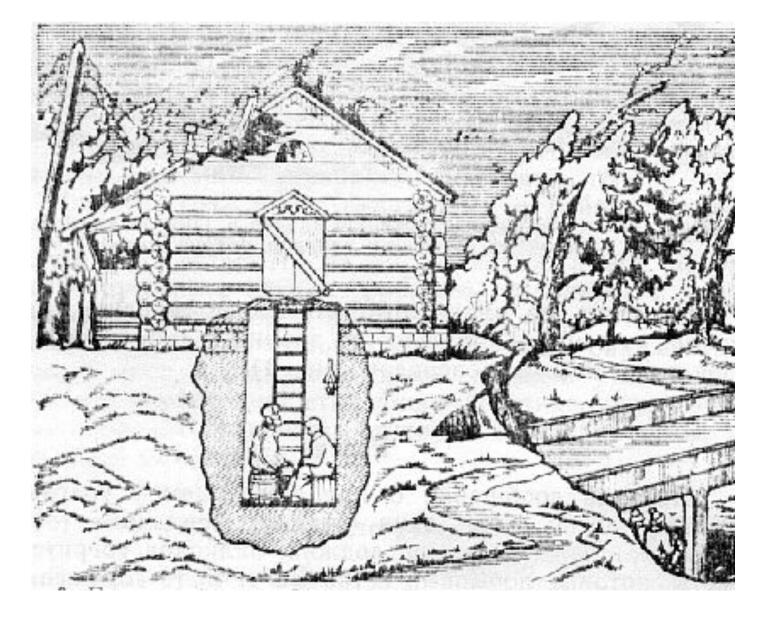


Рис. 65 Возможные варианты укрытия при урагане

3.19. Гидросферные опасности

Наводнения

В зависимости от причин возникновения различают шесть типов наводнений:

- 1. Половодье периодически повторяющийся подъём уровня воды, вызванный весенним таянием снега.
- 2. <u>Паводок</u> периодический кратковременный подъём уровня воды в реке, вызванный обильными дождями.
- 3. <u>Затор</u> нагромождение льдин во время весеннего ледохода, вызывающий подъём уровня воды.
- 4. <u>Зажор</u> скопление рыхлого льда во время ледостава в сужениях и излучинах русла реки, вызывающий подъём уровня воды.

Типы наводнений (продолжение)

- 5. <u>Ветровой нагон</u> подъём уровня воды, вызванный воздействием ветра на водную поверхность, обычно происходящий в морских руслах крупных рек.
- 6. Наводнения при прорывах плотин это значительный подъём уровня воды, вызванный разрушением плотины или дамбы, а также в горных районах при оползнях, обвалах, движении ледников.

Основной поражающий фактор наводнения - поток воды, высоких уровней, а при прорывах плотин и дамб - значительные скорости течения.

<u>Вторичные поражающие факторы</u> - пожары, оползни, обвалы, обрушение зданий и сооружений, заражение природной среды ядовитыми веществами, загрязнение питьевой воды.

Группы наводнений

По повторяемости, масштабам и суммарному ущербу наводнения делят на четыре группы:

- 1. Низкие (малые) наводнения наблюдаются в основном на равнинных реках, повторяются примерно один раз в 5 10 лет; при таких наводнениях затопляются сельскохозяйственные угодья; они имеют сравнительно небольшой материальный ущерб.
- 2. Высокие наводнения характерны затоплением больших территорий; повторяемость один раз в 20 25 лет; наносят ощутимый материальный ущерб.
- 3. Выдающиеся наводнения охватывают целые речные бассейны, парализуют хозяйственную деятельность, наносят большой материальный ущерб, требуют массовой эвакуации населения; повторяемость один раз в 50 100 лет.
- 4. <u>Катастрофические наводнения</u> полностью парализуют хозяйственную деятельность населения, приводят к гибели людей и огромным материальным потерям.

Наводнения

Справка

1970 г. В районе прибрежной полосы Бенгальского залива мощная нагонная волна, возникшая от урагана, накрыла густонаселённые острова. Погибло около **800 тыс. человек.** Возникла эпидемия холеры и брюшного тифа.

1976 г. В Пакистане от наводнения погиб 1 млн чел.

1953 г. В Голландии при прорыве дамбы погибло 18 тыс.чел.

1824 г. В Санкт-Петербурге во время наводнения было разрушено **3 тыс. домов**, погибло **600 человек.**

1996 г. Ливневые дожди нанесли огромный ущерб отдельным районам Бурятии, Дагестана, Татарстана, Приморского и Хабаровского края.

Действия населения при наводнении

Получено сообщение об угрозе затопления

- 1. Если есть запас времени, то необходимо отключить воду, газ, электричество, потушить горящие печи отопления, перенести на верхние этажи зданий (чердаки) ценные предметы и вещи.
- 2. Затем надо выйти в безопасное место на возвышенность, на чердаки или крыши зданий, взяв с собой документы, деньги, комплект одежды и обуви, запас продуктов. При необходимости используются подручные плавающие средства.
- 3. Оказавшись в воде надо сбросить тяжёлую одежду и обувь и использовать плавающие поблизости предметы.

Внезапное наводнение

Необходимо быстро занять безопасное возвышенное место, не поддаваться панике, принять меры для своевременного обнаружения спасателями.

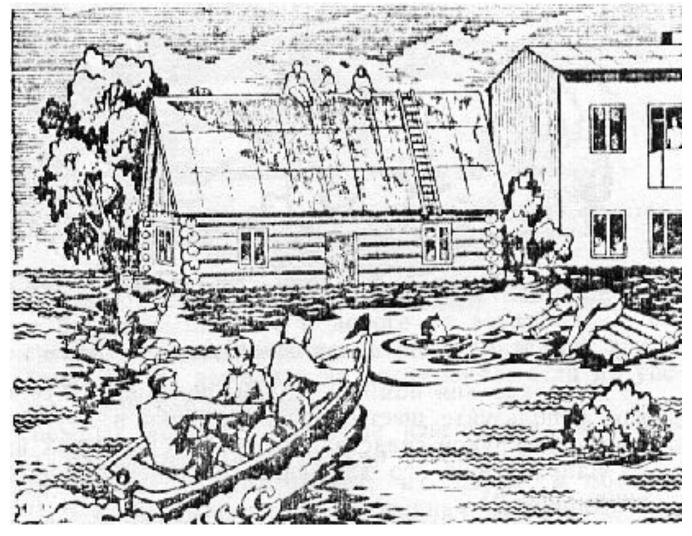


Рис. 62 При наводнении надо принять меры к спасению имущества т.е. перенести его на возвышенное место, а самим занять верхние этажи зданий или чердаки.

¹3.21. Принципы защиты населения от ЧС

Федеральные законы:

- О защите населения и территорий от **ЧС** природного и техногенного характера, 1994.
- Об аварийно-спасательных службах и статусе спасателей, 1995.
- О радиационной безопасности населения, 1996.
- О промышленной безопасности опасных производственных объектов, 1997.
- О безопасности ГТС, 1997.
- О гражданской обороне,1998.

Основные положения закона «О защите населения и территорий от ЧС природного и техногенного характера»

- 1. Проведение защиты должно выполняться под руководством и с персональной ответственностью со стороны исполнительной власти и руководителей объектов.
- 2. Необходимо заблаговременное проведение мероприятий по защите.
- 3. Следует учитывать особенности отдельных регионов.
- 4. При разработке мероприятий по защите необходимо взаимодействие отдельных ведомств и министерств.
- 5. Должна выполняться увязка мероприятий по защите с планом развития региона.

Мероприятия, повышающие эффективность защиты

1. Своевременное оповещение населения о стихийных бедствиях и авариях техногенного характера. Для этого по средствам массовой информации передают специальные сообщения, а также транспортом и предприятиями подаются прерывистые гудки, которые означают:

Внимание всем!

Внимание всем!

Внимание всем!

- 2. Организация и проведение дозиметрического и химического контроля.
- 3. Специальные медицинские профилактические мероприятия.
- 4. Защита продовольствия и воды от заражения РВ и ОВ.
- 5. Обучение населения.
 - 3.22. Организация и проведение аварийно-спасательных работ

3.22. Организация и проведение аварийно-спасательных и других неотложных работ

Цели:

- 1. Спасение людей.
- 2. Оказание медицинской помощи поражённым.
- 3. Локализация аварий.
- 4. Устранение повреждений.
- 5. Создание условий для проведения восстановительных работ.

Проведение комплексной разведки

- 1. При радиоактивном заражении определяют уровни радиации и направление распространения радиоактивного облака, выбирают средства защиты.
- **2**. При химическом заражении определяют вид и концентрацию **ОВ** или **СДЯВ**, зону химического заражения и на основании этих данных подбирают необходимые **СИЗ**.
- 3. При инженерной разведке оценивают характер и степень разрушений объектов, дорог, сооружений, коммуникаций, вид завалов и потребность в инженерной технике; выявляется также пожарная обстановка.
- **4.** Медицинская разведка оценивает санитарно-гигиеническую обстановку на территории **ЧС**.
- Осуществляется ввод в действие специальных мобильных подразделений воинских частей ГО ЧС или отряда МЧС.

- 3
- **1.** Разведка маршрутов движения формирований **ГО** и участков работ.
- 2. Локализация и тушение пожаров.
- 3. Розыск поражённых людей и извлечение их из под завалов, повреждённых и горящих зданий, загазованных и задымлённых помещений.
- **4.** Вскрытие разрушенных, повреждённых защитных сооружений и спасение людей.
- **5.** Оказание первой медицинской помощи поражённым и эвакуация их в медицинские учреждения.
- 6. Вывод или вывоз населения из зон ЧС.
- 7. Санитарная обработка людей, техники и одежды.

<u>Другие неотложные работы включают:</u> прокладку колонных путей, устройство проездов, локализацию аварий на энергосистемах и др.

Рис. 66 Ведение спасательных работ в зоне ЧС

Рис. 67 Извлечение пострадавшего из под обломков завала

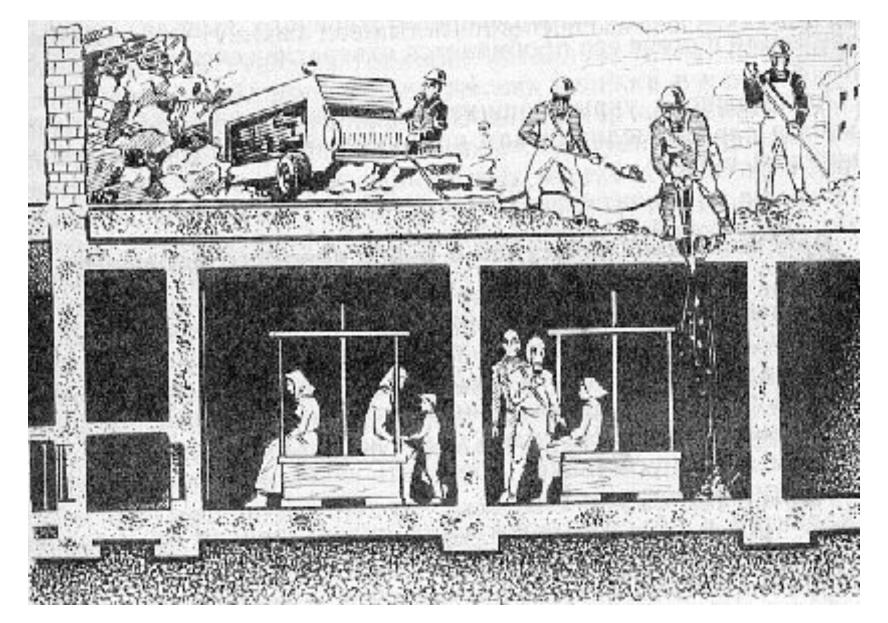


Рис. 68 Вскрытие убежища путём пробивки отверстия в перекрытии

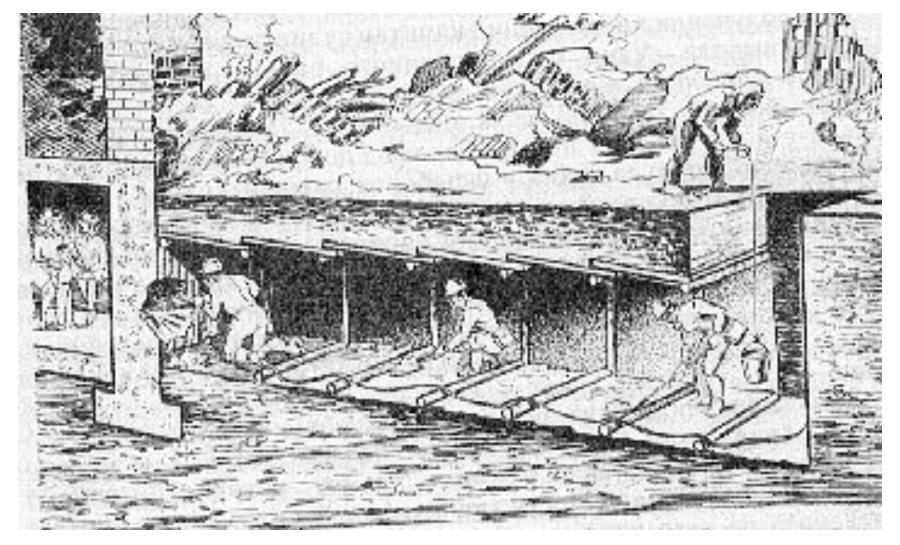


Рис. 69 Вскрытие убежища путём пробивки отверстия в стене из подземной галереи

Технические средства для ведения аварийно-спасательных работ

- 1. Машины для вскрытия подвалов, защитных сооружений: экскаваторы, бульдозеры, подъёмные краны, домкраты, лебёдки.
- 2. Пневматический инструмент для проделывания отверстий и проёмов в стенах: универсальные инструменты «Простор», «Спрут», бурильные установки, отбойные молотки.
- **3**. Оборудование для резки металлов: керосинорезки, автогенные аппараты, суперножницы «Технезис».
- 4. Средства обеспечения переправки техники по бездорожью: механизированные мосты, тягачи-трейлеры, самоходные гусеничные платформы, паромы, понтоны.
- 5. Передвижные дизель -генераторы.
- <u>6.</u> Средства обеспечения водой: бурильные установки, фильтровальные станции.

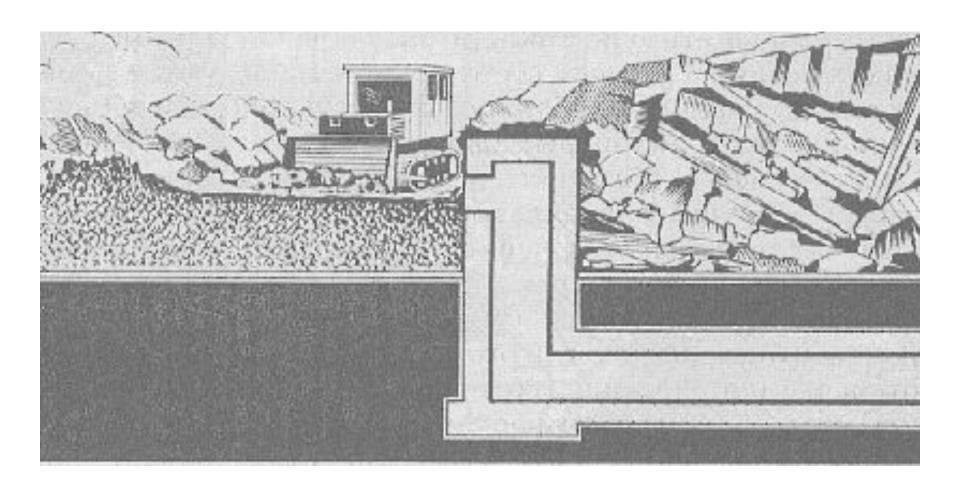


Рис. 70 Освобождение от завала люка аварийного выхода

ПОИСК И СПАСЕНИЕ ЛЮДЕЙ

Поиск людей начинается сразу после ввода спасательных групп

- 1. Поиск людей осуществляется визуально, опросом очевидцев, с привлечением кинологов и специальными приборами:
 - акустический статоскоп для прослушивания звуковых сигналов;
 - малогабаритная телекамера;
 - теплопеленгатор, реагирующий на тепло, излучаемое человеком.
- 2. Поисковые группы устанавливают связь с пострадавшими; деблокирование производится устройством лазов, разборкой завалов, освобождением аварийных выходов.
- 3. Вынос поражённых людей осуществляется на руках, плащах, брезенте, одеялах, волоком и с помощью носилок.