МГУ им. ILЭ Баумана. Военный институт Кафедра №1 Военно-воздушных ски

BOIDOC Nº1 Системы управления ЗУР

Под системой управления ЗУР понимается совокупность устройств, определяющих положение ракеты и цели, вырабатывающих команды управления и наведения ракеты на цель в течение всего времени полета до встречи с целью.

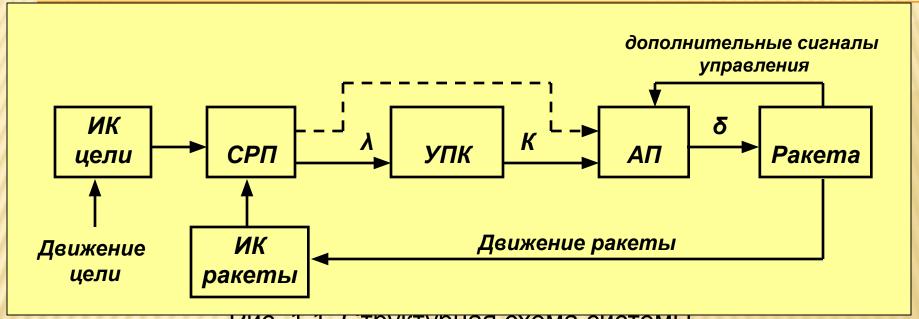


Рис. 1.1. Структурная схема системы

····Любая система управления ракетой в общем случае включает в себя:

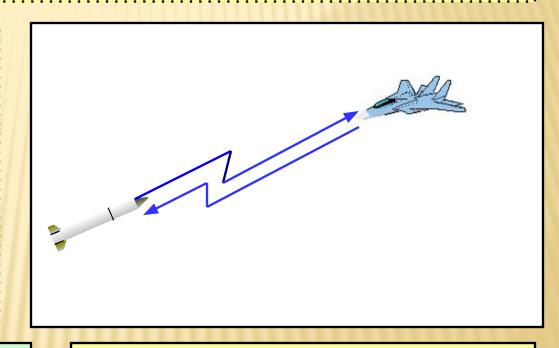
- измеритель текущих координат ракеты и цели (*ИК*);
- счетно-решающий прибор (*СРП*) устройство определения параметра и выработки команд управления;
- устройство передачи команд (*УПК*);
- автопилот (*АП*);
- ... ракету. -. объект регулирования.

Классифицировать системы управления можно по разным признакам (целевому назначению, принадлежности к роду войск, конструктивному выполнению и т.д.). Однако основным признаком классификации следует считать место расположения основной аппаратуры системы.

8

1 СИСТЕМЫ УПРАВЛЕНИЯ ЗУР

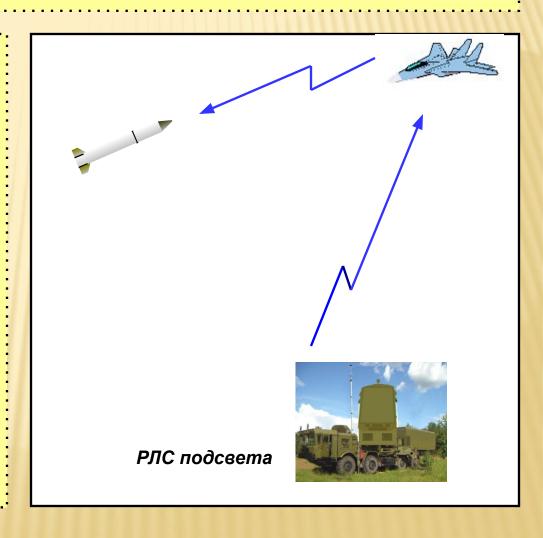
Автономные системы – это такие системы, у которых вся аппаратура, обеспечивающая наведение ракеты на цель, находится на борту ракеты и ее функционирование не зависит от сигналов, поступающих извне. Другими словами, в автономной системе программа полета ракеты заранее (до ее старта) заложена в бортовой аппаратуре и не может корректироваться в процессе полета.


Системы самонаведения — это такие системы, в которых команды управления полетом ракеты вырабатываются на ее борту в результате обработки сигналов, излучаемых или отраженных от цели.

Аппаратурная реализация системы самонаведения предполагает наличие на борту ракеты устройства, обеспечивающего автоматическое сопровождение цели, в результате чего определяется угловое положение цели относительно ракеты. Таким устройством является головка самонаведения, основной элемент которой - координатор цели.

По месту расположения источника используемой энергии системы самонаведения подразделяются на активные, полуактивные и пассивные.

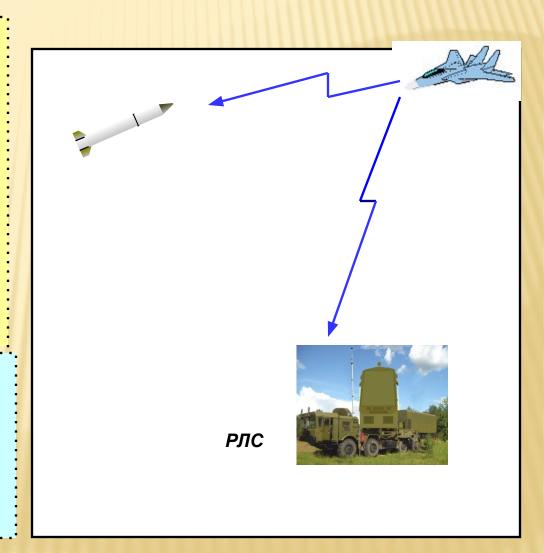
В активных системах самонаведения ракета облучает цель своим источником энергии, которая, отражаясь от цели, принимается бортовым приемником ракеты и используется для формирования команд управления полетом ракеты

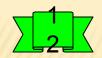

<u>Достоинством</u> является полная автономность работы системы после пуска ракеты.

Недостатки: сложность бортового оборудования ракеты и сравнительно малая дальность действия.

полуактивные системы самонаведения

При полуактивном самонаведении передатчик размещается не на борту ракеты, а вне ее, следовательно, может иметь большую мощность и располагаться на большом удалении от цели На борту ракеты устанавливается только приемное устройство. Дальность действия радиолокационных полуактивных систем самонаведения значительно больше, чем активных.





пассивные системы самонаведения

При пассивном самонаведении ракета наводится на цель, которая является источником излучаемой энергии. На борту ракеты необходимо иметь только приемное устройство для приема излучаемых целью сигналов, а передатчик для облучения цели не требуется.

Важнейшее <u>преимущество</u> – отсутствие собственных излучений, что способствует скрытности ее работы и обеспечивает маскировку применения.

Системы теленаведения - это системы, в которых сигналы управления полетом ракеты формируются на борту ракеты по данным измерения ее отклонения от ориентированных в пространстве лучей, формируемых на пункте наведения.

За ориентированную в пространстве линию принимают РСН, которое получается при коническом сканировании диаграммы направленности.

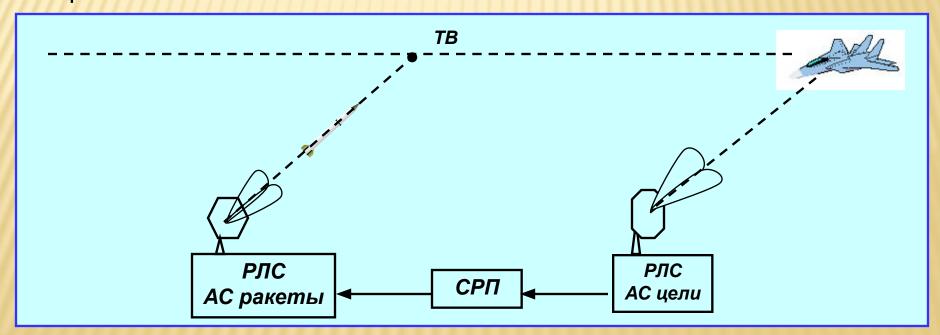
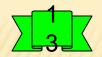
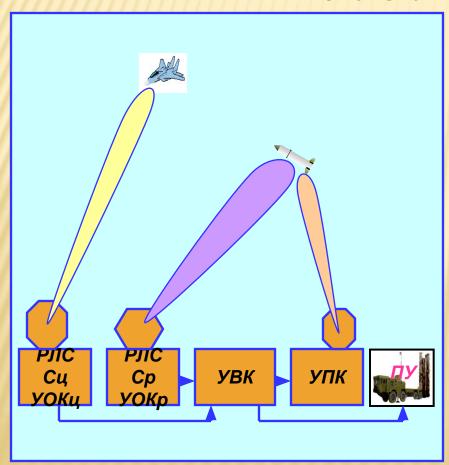




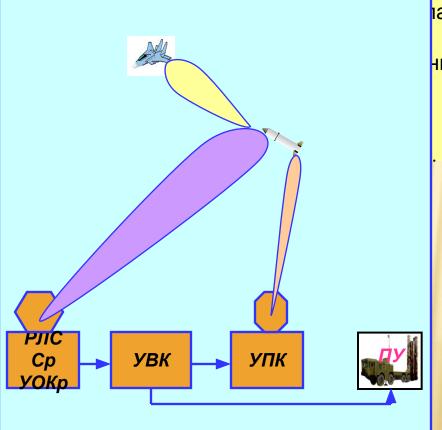
Рис. 1.5. Двулучевая система теленаведения

Командные системы теленаведения— это такие системы, в которых наведение ракеты на цель осуществляется с помощью специальных команд, передаваемых с пункта управления на ракету.

Командная система ТУ-І

В командной системе ТУ-I (рис.)

определение текущих координат цели и ракеты осуществляется с наземной РЛС сопровождения цели и ракеты.


Достоинства: относительная простота бортовой аппаратуры, сильная гибкость по числу и геометрии возможных траекторий ракеты.

Основной ее недостаток - зависимость величины линейной ошибки наведения ракеты на цель от дальности стрельбы.

Командная система ТУ-ІІ

В командных системах ТУ-II координатор цели располагается на борту ракеты (рис.). Он осуществляет слежение за целью и определение ее текущих координат в подвижной системе координат, связанной с ракетой. Координаты цели по каналу связи передаются на пункт управления на земле(УВК). От РЛС

пают текущие координаты параметр рассогласования и формирует ния, которые после

передаются на борт

Достоинства: независимость точности наведения ЗУР от дальности стрельбы и повышение разрешающей способности по мере приближения ракеты к цели.

Основной ее недостаток - возрастание сложности и стоимости бортовой аппаратуры и невозможность ручного сопровождения цели.

2 Методы наведения ЗУР

Наведение управляемой ракеты на движущуюся цель есть непрерывный процесс автоматического управления ее полетом.

В результате ракета выводится в область встречи с целью и поражает ее.

Методом наведения называется закон, который на основании координат и параметров движения цели однозначно определяет требуемое движение ракеты в точку встречи с целью.

В процессе полета ракеты под действием большого числа факторов и при изменении положения воздушной цели в пространстве происходит нарушение заданного закона сближения, и ракета сходит с кинематической траектории.

Меру нарушения связей, налагаемых методом наведения на движение ракеты, называют *параметром рассогласования*.

К методам наведения предъявляются следующие требования:

должна обеспечиваться встреча ракеты с целью во всем диапазоне параметров ее движения.

тривизна кинематической траектории должна обеспечивать выполнение неравенства прасп > ппотр.

2 Методы наведения ЗУР

Классификация методов наведения

Двухточечные методы - это такие методы, при реализации которых определяется взаимное положение в пространстве двух точек - ракеты и цели.

Задание метода наведения сводится к определению положения вектора скорости ракеты Vp относительно линии ракета -цель. Угол между вектором Vp и линией PЦ называют углом упреждения. Он может быть задан постоянным или изменяющимся во времени по определенному закону.

Четыре вида уравнения связи, которые определяют двухточечные методы:

-метод погони с нулевым упреждением. $\Theta p - \varepsilon = \psi = 0$ метод погони с постоянным углом упреждения Θp - ε = ψ =const.

метод параллельного сближения $\varepsilon=0$

метод пропорционального сближения. $\Theta p = \beta \varepsilon$

Метод пропорционального сближения (пропорциональной навигации) — такой метод, при котором в процессе всего наведения угловая скорость вращения вектора скорости ракеты Vp пропорциональна угловой скорости вращения линии визирования (линии ракета – цель)

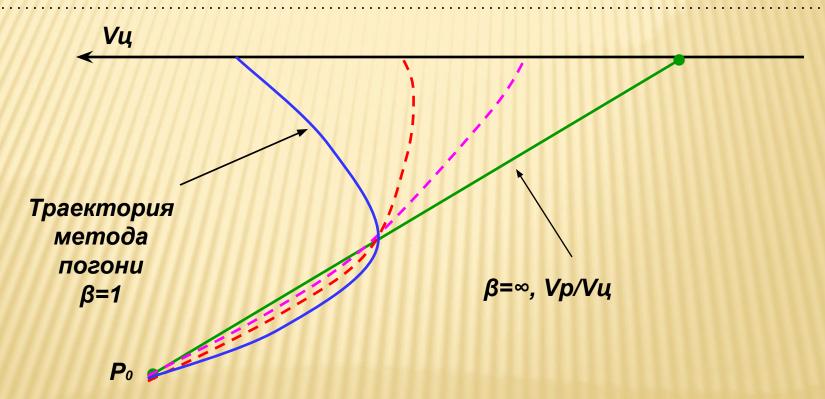


Рис. 2.1.2 Траектории метода пропорционального сближения (пунктирные кривые)

Трехточечными методами наведения называются такие методы, при реализации которых определяется взаимное положение в пространстве трех точек — пункта управления, ракеты и цели. Эти методы используются для наведения телеуправляемых ракет. Уравнения трехточечных методов можно задать следующей структурой:

$$\begin{cases} \varepsilon_{\kappa} = \varepsilon_{u} + A_{\varepsilon} \Delta r \\ \beta_{\kappa} = \beta_{u} + A_{\beta} \Delta r \end{cases}$$

где **А** ε и **А** β – параметры метода наведения в соответствующей плоскости управления, вид которого определяет конкретный метод.

Δr=ru-rp – разность наклонных дальностей цели и ракеты

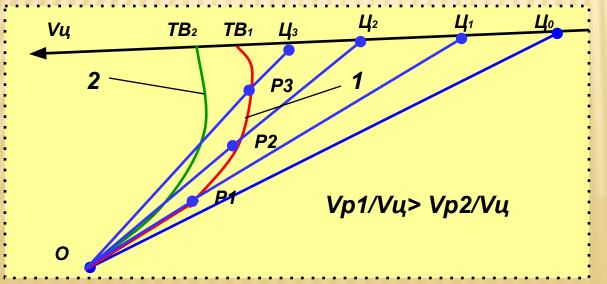


Рис. 2.1.3 Графическое построение требуемой траектории по методу трех точек

Метод трех точек (накрытия цели)

Методом трех точек называется метод наведения, согласно которому ракета в течение всего времени полета к цели должна находиться на прямой, соединяющей пункт управления с целью.

По отношению к наблюдателю, находящемуся на пункте управления, ракета "накрывает" цель, отсюда второе наименование метода.

Достоинства метода трех точек: реализация метода не требует информации о дальности до цели, поэтому этим методом возможен обстрел целей – постановщиков активных помех; достаточно высокая эффективность стрельбы по малоскоростным и неманеврирующим целям; простота приборной реализации.

К недостаткам данного метода можно отнести: большую динамическую ошибку из-за высокой кривизны траектории, меньшую дальность стрельбы; сравнительно большую величину потребных перегрузок, особенно вблизи цели, где располагаемые перегрузки уменьшаются; резкое возрастание ошибок наведения при стрельбе по скоростным и маневрирующим целям.

Методы полного и половинного спрямления траектории.

При стрельбе по скоростным целям для уменьшения кривизны траектории целесообразно вводить упреждение в угловом положении ракеты относительно цели по направлению вектора Vц. При этом линия визирования ракеты упреждает линию визирования цели на некоторый угол. Наведение ЗУР производится в заранее рассчитанную точку встречи с целью, или в упрежденную точку, положение которой уточняется в зависимости от характера движения цели.

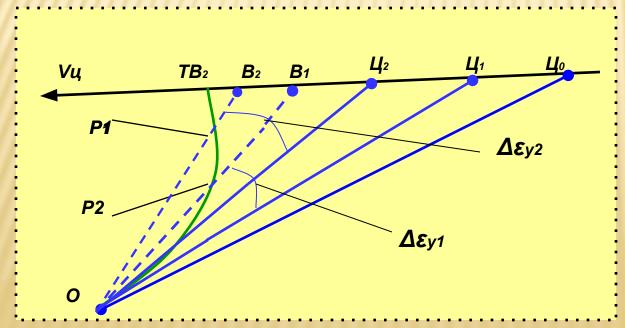


Рис. 2.1.4 Графическое построение требуемой траектории по методу половинного спрямления траектории

<u>Достоинством</u> метода полного спрямления является минимальная кривизна траектории при обстреле неманеврирующей цели.

К <u>недостаткам</u> можно отнести следующие:

- при высоких скоростях цели Vц угол упреждения будет настолько большим, что при ограниченных размерах сектора обзора окажется невозможным одновременное сопровождение цели и ракеты; - при маневрах цели положение точки встречи в пространстве очень резко изменяется, а траектория ракеты будет иметь резкие изломы, и в этом случае сильно возрастают динамические ошибки наведения.

Метод половинного спрямления в сравнении с методом трех точек обладает следующими преимуществами: меньшей (примерно в два раза) кривизной траектории метода, значит, и меньшими значениями динамических ошибок наведения; достаточно эффективной стрельбой по маневрирующим и скоростным целям.

К <u>недостаткам</u> этого метода можно отнести: невозможность его применения в условиях активных помех, когда нельзя определить дальность до цели; более сложную приборную реализацию.

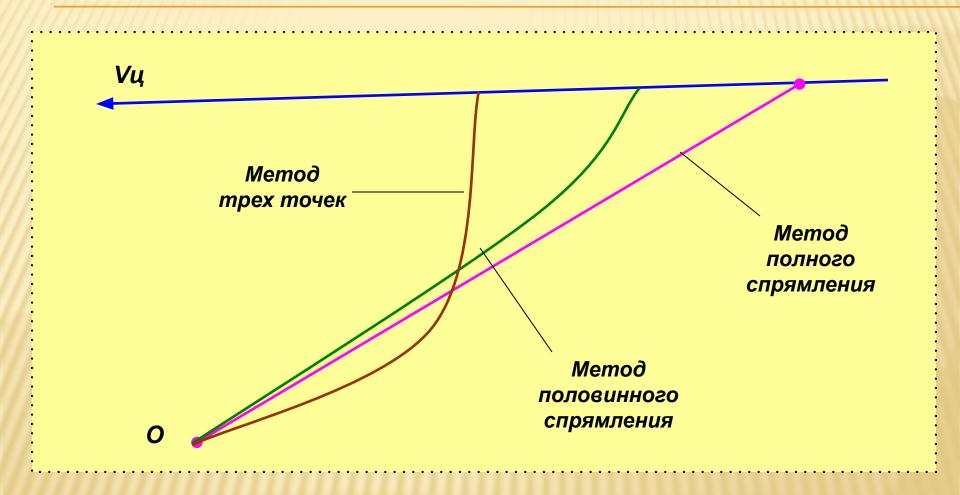
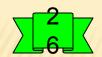
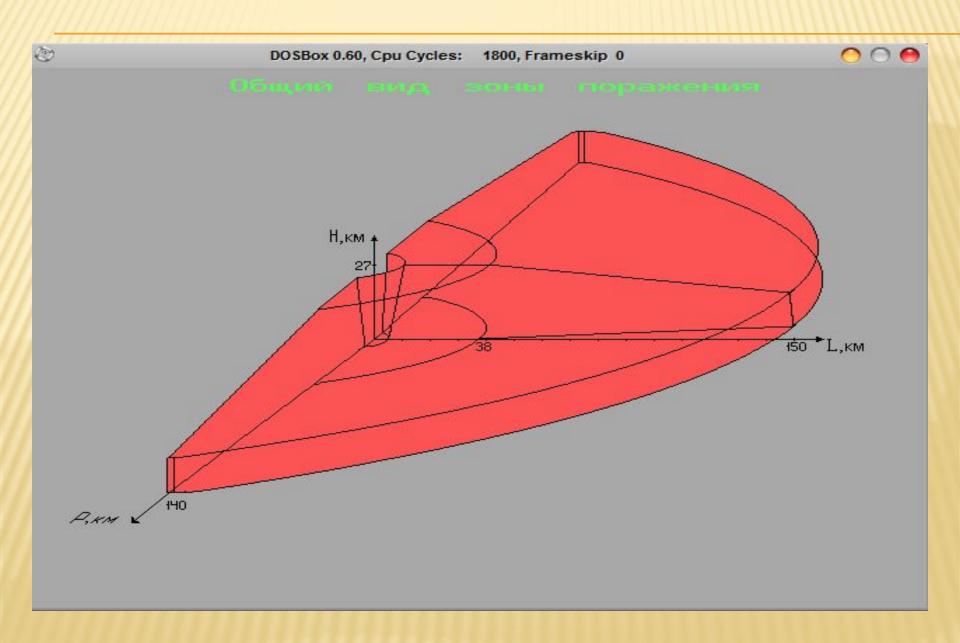
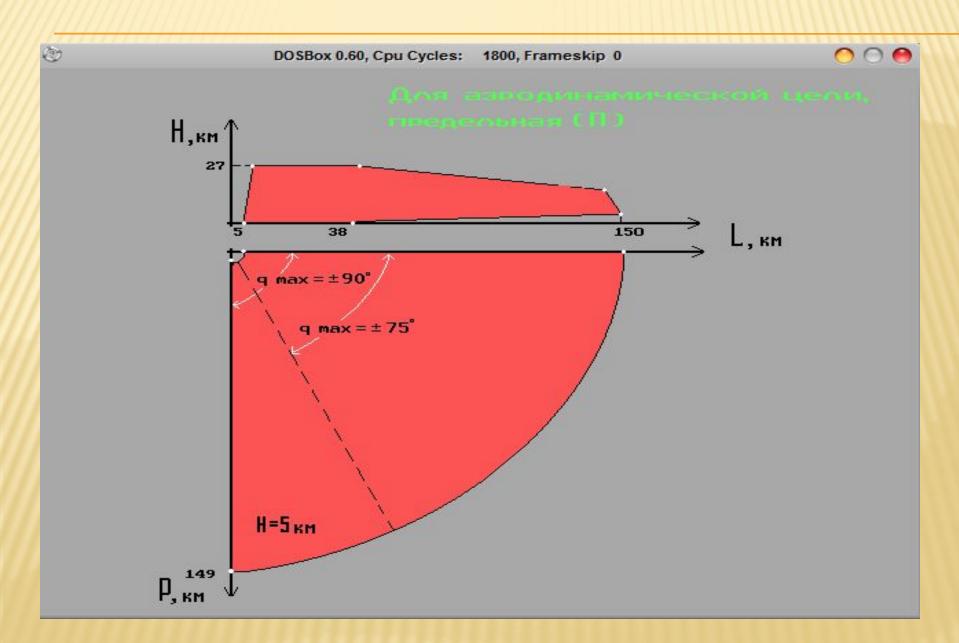
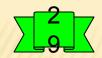



Рис. 2.1.5 Требуемые траектории ракеты при ее наведении разными трехточечными методами.

Вопрос №3 **30Hbl TOPAKEHIA A TYCKA** 3PK


Зона поражения - это область пространства, в каждой точке которой обеспечивается поражение одной ракетой одиночной цели при фиксированных условиях стрельбы с вероятностью не менее заданной. Размеры зоны поражения характеризуются дальней, ближней, верхней и нижней границами.


Основными величинами, характеризующими зону поражения ЗРК, являются горизонтальная (наклонная) дальность до дальней *dA(DA)* и ближней *dБ(DБ)* границ зоны поражения, минимальная *Нмин* и максимальная *Нмакс* высота, максимальный курсовой угол *qмакс*, предельный курсовой параметр *Рпред* и максимальный угол места *ємакс*.


Совокупность зон поражения данного ЗРК при всех возможных направлениях полета цели принято называть зоной обстрела комплекса.

Реализуемая зона поражения — часть зоны поражения ЗРК, в пределах которой обеспечивается уничтожение цели с учетом ограничений, связанных с условиями стрельбы (рельефом местности, помехами и т.д.).

Область пространства, при нахождении цели в любой точке которой в момент пуска ракеты обеспечивается встреча ракеты с целью в зоне поражения, называется зоной пуска зенитных ракет.

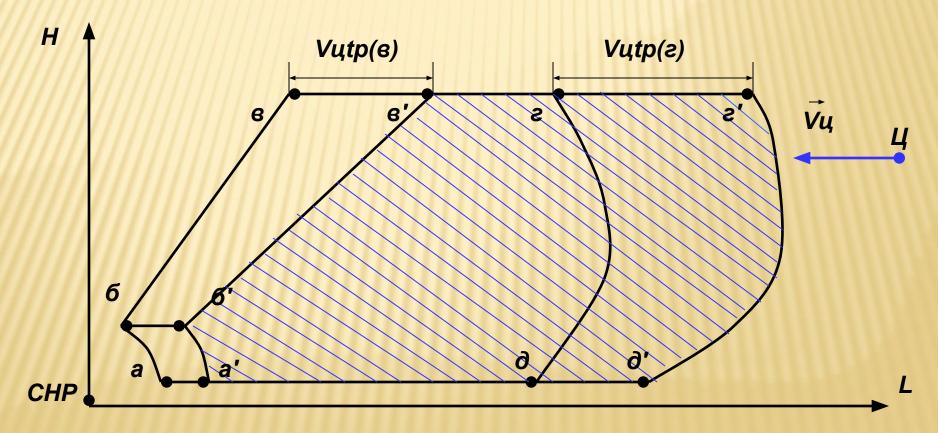
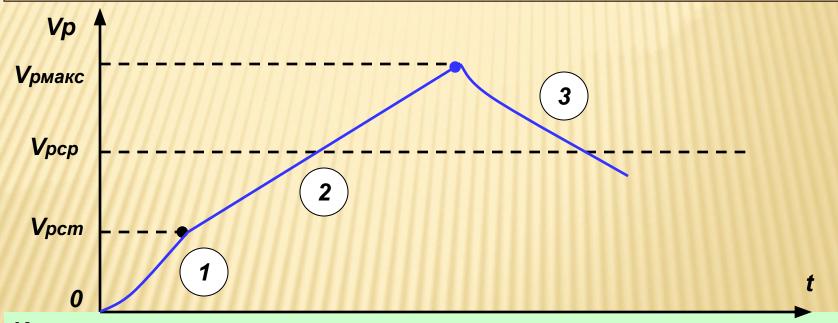



Рис. 3.2 Вертикальное сечение зон поражения и


Положение границ зоны поражения в общем случае сопределяется большим числом факторов, связанных с характеристиками комплекса, условиями стрельбы и характеристиками воздушной цели. Это, прежде всего:

- летно-баллистические и маневренные возможности ракеты;
- параметры контура управления и метод наведения ракеты;
- характеристики боевого снаряжения ракеты (боевой части и радиовзрывателя);
- возможности радиолокационных средств по сопровождению целей;
- летные характеристики, эффективная отражающая поверхность и уязвимость воздушных шлей;
- :.•... условия стрельбы (наличие помех, маневра цели) и др.....

3 Зоны поражения и пуска ЗРК 3.1 Факторы, определяющие положение верхней и дальней границы зоны поражения

Положение верхней и дальней границ зоны поражения определяется такими значениями высоты и дальности точки встречи, при которых эффективность стрельбы по цели не ниже заданной.

Характер зависимости скорости от времени полета показан на рис., где отмечены три участка: 1 - разгон ракеты, т.е. ее полет со стартовым ускорителем; 2 - полет ракеты с работающим маршевым двигателем, обеспечивающим дальнейшее повышение скорости; 3 - полет ракеты на пассивном участке траектории, на котором скорость под действием лобового сопротивления и силы тяжести падает.

3 Зоны поражения и пуска ЗРК 3.1 Факторы, определяющие положение верхней и дальней границы зоны поражения

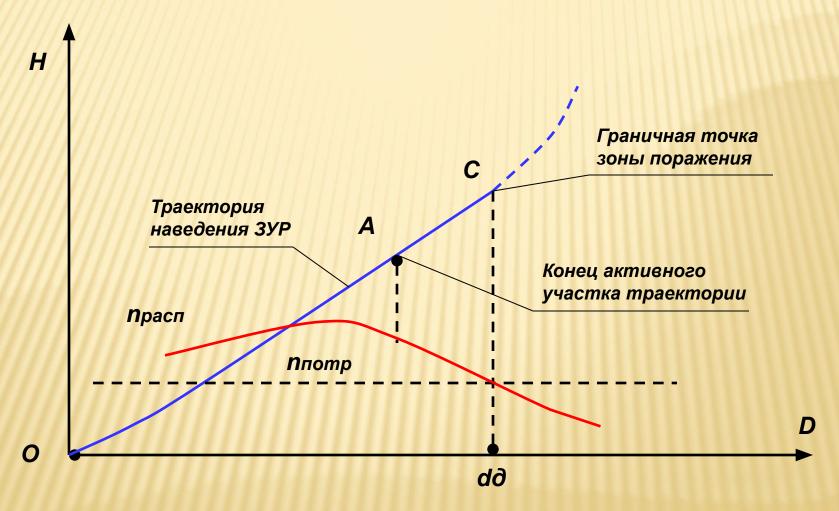
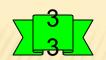



рис. Досягаемость ракеты по соотношению располагаемой и потребной нагрузки.

3 Зоны поражения и пуска ЗРК 3.1 Факторы, определяющие положение верхней и дальней границы зоны поражения

Положение дальней границы зоны поражения предопределяет потребную дальность действия радиолокационной станции сопровождения цели, входящей в состав комплекса:

$$d_{nomp} = d_{\mathcal{A}} + V_{\mathcal{U}}(t_{pa6} + t_{e})$$

где *d*_{потр} – потребная горизонтальная дальность действия РЛС сопровождения цели;

dд − горизонтальная дальность до дальней границы зоны поражения;

*t*_{раб} − время, необходимое для подготовки стрельбы после обнаружения цели РЛС (работное время ЗРК);

 $t_{\it B}$ – полетное время ракеты до точки встречи.

3 Зоны поражения и пуска ЗРК 3.2 Факторы, определяющие положение ближней границы зоны поражения

В траектории ЗУР можно выделить три участка:

- а) неуправляемого полета ракеты (начальный);
- б) вывода ракеты на требуемую траекторию (отработки начального рассогласования);
 - в) наведения.

От протяженности первых двух участков зависит удаление ближней границы зоны поражения.

Для приближения к точке старта ракеты ближней границы зоны поражения необходимо уменьшать начальные ошибки прицеливания и время переходного процесса системы при их отработке

3.2 Факторы, определяющие положение ближней границы зоны Максимальный угол места и курсовой угол зоны поражения поражения

Время отработки начальной ошибки прицеливания определяет не всю поверхность ближней границы зоны поражения, а лишь ее часть, примыкающую к комплексу. На положение других участков этой поверхности, фиксируемых максимальными значениями угла места вмакс и курсового угла фмакс влияют следующие факторы:

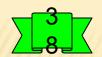
- соотношение потребных и располагаемых перегрузок ракеты;
- согласование неконтактного взрывателя и боевой части при заданных условиях встречи;
- ограничение угла сопровождения цели радиолокационной станцией в угломестной плоскости;
- ограничение текущего пеленгационного угла цели максимально возможным отклонением антенны головки самонаведения от продольной оси ракеты;
- ограничение угла упреждения кинематической траектории относительно линии визирования цели.

3.3 Факторы, определяющие положение нижней границы зоны Положение нижней границы сремению ражения в значительной степени определяется конструктивными особенностями комплекса, характеристиками метода наведения и системы управления, параметрами неконтактного взрывателя, возможностью работы радиолокационных средств по низколетящим целям и т.д.

<u>Для поражения воздушной цели на малой высоте</u> необходимо:

- обнаружить цель радиолокационной станцией на требуемой дальности;
- обеспечить наведение ракеты на цель с достаточной точностью, исключив возможность ее столкновения с землей;
- исключить влияние земли на работу неконтактного взрывателя (обеспечить его срабатывание по цели). Кривизна земной поверхности ограничивает дальность радиолокации дальностью прямой видимости (рис. 3.1.4). Дальность прямой видимости (в километрах):

$$D_{np.вид.} = 3.57 (\sqrt{h} + \sqrt{H}), \;\;$$
 где h — высота антенны РЛС, м; H — высота полета цели, м.


3.3 Факторы, определяющие положение нижней границы зоны поражения

С учетом нормальной рефракции (отклонения радиолуча от прямолинейного пути в среде с переменным коэффициентом преломления) формула примет вид

$$D_{np.eu\partial.} = 4.12(\sqrt{h} + \sqrt{H}).$$

Рис. Дальность прямой видимости.

3.3 Факторы, определяющие положение нижней границы зоны поражения

Большое влияние на дальность обнаружения низколетящих целей оказывают углы закрытия РЛС. Рельеф местности и местные предметы, создающие положительные углы закрытия, являются экраном электромагнитной энергии. За ними образуется область радиотени, в которой цели не обнаруживаются.

Зависимость дальности обнаружения от угла закрытия (укрытия) и высоты полета цели определяется из формулы

$$\varepsilon_{y\kappa p} = arc\sin(\frac{H}{D} - \frac{D}{2R_3}),$$

где гукр - угол закрытия антенны РЛС; Н — высота полета цели, км; D — дальность обнаружения РЛС при данном угле закрытия, км; Rз — радиус земли, равный 6370 км (с учетом нормальной рефракции он принимается равным 8500 км).

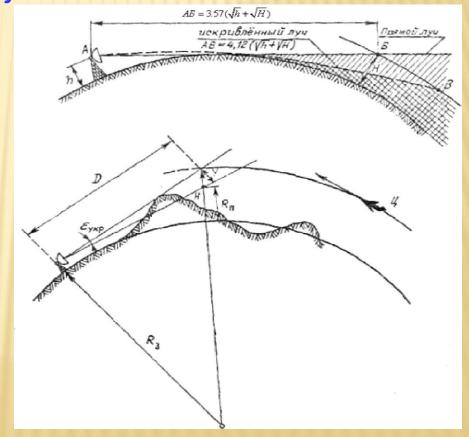


Рис. Влияния угла закрытия на дальность прямой видимости

3 Зоны поражения и пуска ЗРК 3.3 Факторы, определяющие положение нижней границы зоны поражения

— Дальность обнаружения в километрах (с учетом нормальной рефракции) для различных углов укрытия и высоты полета цели приведены в табл. 3.1.

Таблица 3.1

Еукр	Высота (H-h), м					
	20	50	100	300	500	1000
0°	16	28	40	71	92	130
0°15`	3,3	9,2	18	43	62	98
0°30`		3,8	10	28	44	75
1°			5,3	16	26	49
2°				8,3	14	27

3 Зоны поражения и пуска ЗРК 3.3 Факторы, определяющие положение нижней границы зоны поражения

На дальность радиолокации при работе по низколетящим целям оказывает влияние не только кривизна земли, но и возникающее при этом явление интерференции радиоволн.

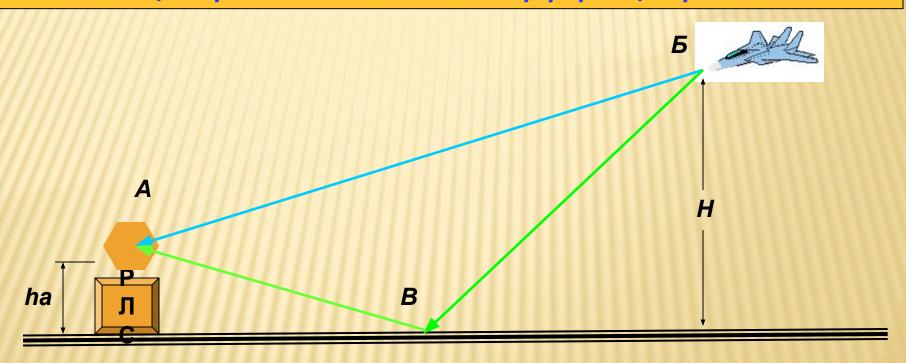



Рис. Интерференция радиоволн, распространяющихся двумя путями

3 Зоны поражения и пуска ЗРК 3.4 Гарантированная зона пуска

Гарантированной зоной пуска называется область пространства, при нахождении цели в которой в момент пуска ракеты встреча ракеты с маневрирующей целью произойдет в зоне поражения.

Границы этой зоны определяются условием $t_8 = t_{\text{и.потр}}$, где t_8 полетное время ракеты до точки встречи; $t_{\text{и.потр}}$ — время, потребное цели для выхода путем резкого маневра за границы зоны поражения.

Для каждой точки гарантированной зоны пуска *t*_в ≤ *t*_{ц.потр.}

Вопрос №4 ЦИКЛ СТРЕЛЬБЫ и ЕГО СОСТАВЛЯЮЩИЕ

4 Цикл стрельбы и его составляющие

Возможность ЗРК по последовательному обстрелу целей, входящих в его зону поражения, т.е. пропускная способность комплекса, в общем случае определяется продолжительностью цикла стрельбы и временем перезаряжания пусковых установок и подготовки ракет к старту.

Цикл стрельбы характеризуется временем занятости целевого канала комплекса при выполнении одной стрельбы п ракетами (п - число ракет в очереди при обстреле данной цели одним каналом). Это время включает время подготовки стрельбы и время, необходимое на обстрел цели. Если продолжительность цикла стрельбы фиксировать моментами пуска ракет по первой и второй целям, то

$$T$$
ц = T об + T п,

где Тц – продолжительность цикла стрельбы; Тоб - время, необходимое на обстрел первой цели; Тп - время переноса огня на вторую цель, равное времени подготовки стрельбы.

4 Цикл стрельбы и его составляющие

Время, необходимое на обстрел цели, зависит от боевых свойств комплекса и определяется по формуле

$$Toб = tв + tн + tоц,$$

где tв — полетное время ракеты до точки встречи; tн — сумма временных интервалов между пусками ракет в очереди; tоц — время оценки результатов стрельбы.

Время переноса огня можно определить по формуле

$$T_{\Pi} = t_{UY} + t_{3axe} + t_{\Pi O \partial z}$$

где tцу — время на отработку целеуказания РЛС слежения (подсвета) цели и ее обнаружение; tзахв — время захвата цели на сопровождение РЛС слежения (подсветка); tподг — время подготовки исходных данных для стрельбы, приведения в окончательную готовность ракет и пусковых установок и оценки готовности канала к стрельбе.

Литература:

- 1. А.С. Малыгин «Управление огнем ЗРК»
 - 2. Ф.К. Неупокоев «Стрельба зенитными ракетами»
 - 3. В.П. Демидов, Н.Ш. Кутыев «Управление зенитными ракетами»