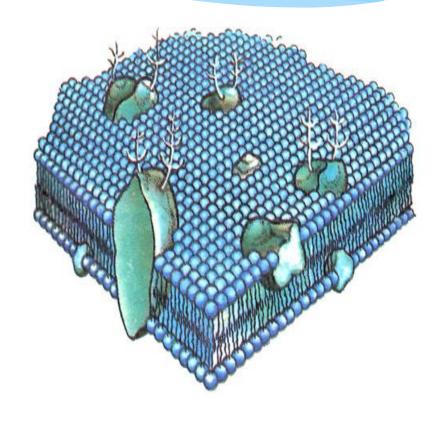
БИОЛОГИЧЕСКИЕ МЕМБРАНЫ


Выполнила студентка группы 13ТПОП1с

Овчинникова И.В.

Преподаватель: Никонова А.В.

Характеристика

Клеточная мембрана (также цитолемма, плазмалемма, плазматическая ИЛИ мембрана) — эластическая молекулярная структура, состоящая из белков и липидов. Отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулирует обмен между клеткой средой; внутриклеточные мембраны разделяют клетку специализированные на замкнутые отсеки — компарт <u>менты</u> или <u>органеллы</u>, которых поддерживаются определённые условия среды.

Строение

* <u>Плазматическая</u>

мембрана, или плазмалемма, — наиболее постоянная, основная, универсальная для всех клеток мембрана. Она представляет собой тончайшую (около 10 нм) пленку, покрывающую всю клетку. Плазмалемма состоит из молекул белков и фосфолипидов.

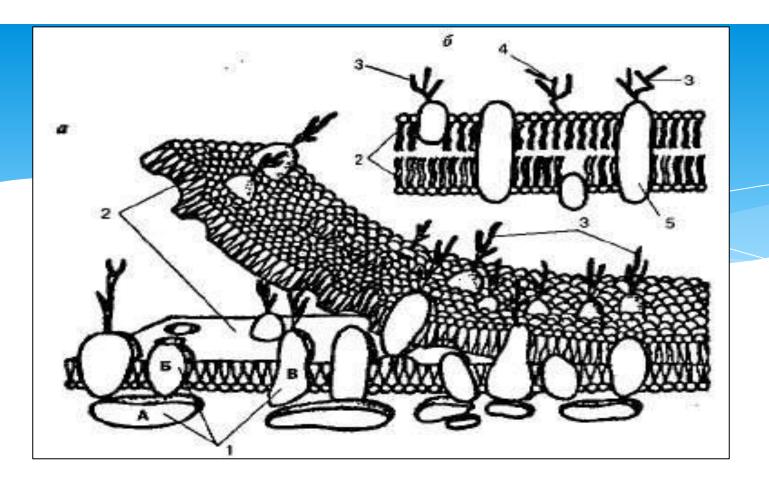
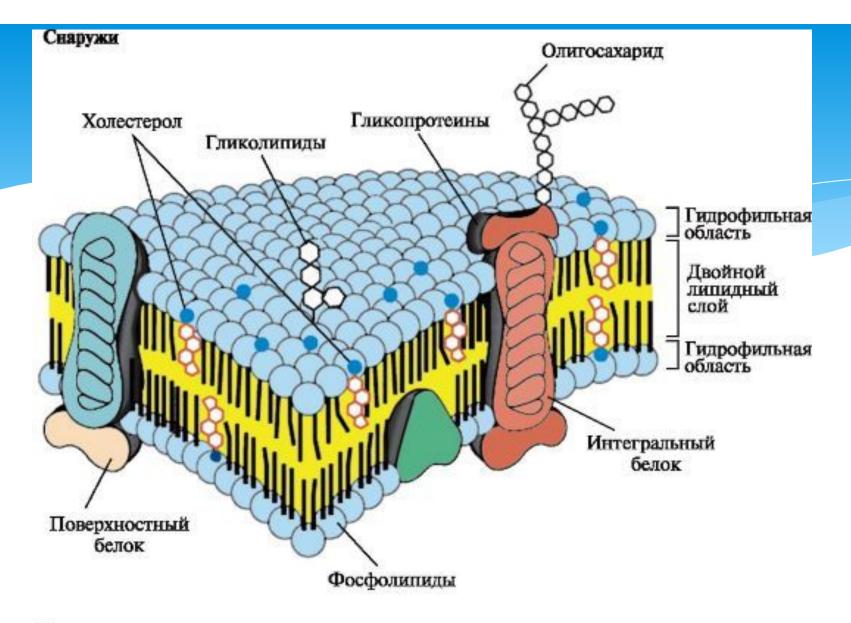
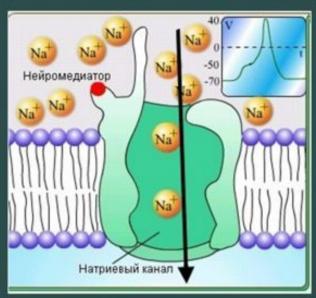



Схема строения мембраны: а — трехмерная модель; б — плоскостное изображение; 1 — белки, примыкающие к липидному слою (A), погруженные в него (Б) или пронизывающие его насквозь (В); 2 — слои молекул липидов; 3 — гликопротеины; 4 — гликолипиды; 5 — гидрофильный канал, функционирующий как пора.

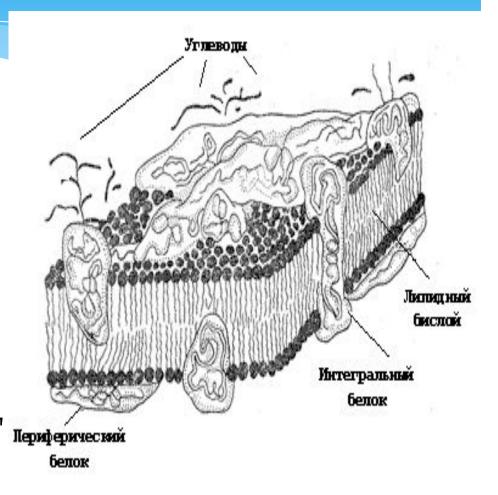
Биологические функции


* Одной из основных особенностей всех эукариотических клеток является изобилие сложность строения внутренних мембран. Мембраны отграничивают цитоплазму от окружающей среды, а также формируют оболочки ядер, митохондрий и пластид. Они образуют лабиринт эндр-плазматического ретикулума и уплощенных пузырьков в виде стопки, составляющих комплекс Гольджи. Мембраны образуют лизосомы, крупные и мелкие вакуоли растительных и грибных клеток, пульсирующие вакуоли простейших. Все эти структуры представляют собой компартменты (отсеки), предназначенные для тех или специализированных процессов и циклов. Следовательно, без мембран существование клетки невозможно.

Внутри

Молекулы фосфолипидов расположены в два ряда гидрофобными концами внутрь, гидрофильными головками к внутренней и внешней водной среде. В отдельных местах бислой (двойной слой) фосфолипидов насквозь пронизан белковыми молекулами (интегральные белки). Внутри таких белковых молекул имеются каналы — поры, через которые проходят водорастворимые вещества. Другие белковые молекулы пронизывают бислой липидов наполовину с одной или с другой стороны (полуинтегральные белки). На поверхности мембран эукариотических клеток имеются периферические белки. Молекулы липидов и белков удерживаются благодаря гидрофильно-гидрофобным взаимодействиям. В состав плазматической мембраны эукариотических клеток входят также полисахариды. Их короткие, сильно развлетвленные молекулы ковалентно связаны с белками, образуя гликопротеины, или с липидами (гликолипиды). Содержание полисахаридов в мембранах составляет 2—10% по массе. Полисахаридный слой толщиной 10—20 нм, покрывающий сверху плазмалемму животных клеток, получил название гликокаликс.

Tight junction Desmosome Gap junction Hemidesmosomes

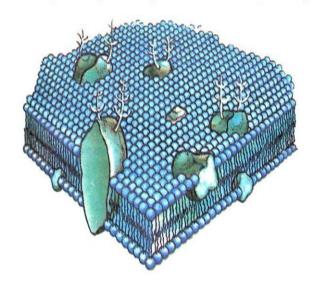


Функции мембран

- 1. Защитная.
- 2. Опорная.
- 3. Ограничительная.
- 4. Обеспечение связи между клетками.
- 5. Место прохождения биохимических реакций
- 6. Транспортная.
- 7. Регуляция обмена веществ между клеткой и внешней средой.
- 8. Рецепторная.

Химический состав мембран

Состав мембраны зависит от их типа и функций, однако основными составляющими являются Липиды и Белки, а также <u>Углеводы</u> (небольшая, но чрезвычайно важная часть) и вода (более 20% общ его веса).


Молекулярная организация биологических мембран

*

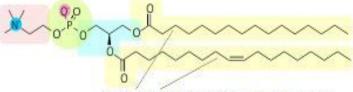
представления о липидной природе биологических мембран относят к 1899 г. (Э. Овертон). В 1925 г. голландские ученые Э. Гортер и Ф. Грен-дель выдвинули представление о липидном бислое как о полупроницаемом барьере, окружающем клетку. Представление о том, что с мембранами связаны белки, впервые в 1935 г. высказал Дж. Даниелли. В том же 1935 г. Дж. Даниелли совместно с Х. Давсоном выдвинули гипотезу об общем принципе структурной организации клеточных мембран как трехслойной структуре – своеобразном сендвиче, где двойной ориентированных одинаковым образом липидных заключен между двумя слоями глобулярного белка, формирующего границу мембраны с водой. Развитие техники электронной микроскопии, совершенствование элек-трофоретических методов выявить более сложную картину структурной ПОЗВОЛИЛО организации биологических мембран.

Таким образом, к началу 70-х гг. накопилось достаточно много новых фактов, на основании которых С.Дж. Синджер и Л.Г. Николсон предложили новую модель молекулярной организации биологических мембран, названиежидкостнополучившую мозаичной модели. В соответствии с этой моделью структурной основой биологических мембран является липщщый бислой, в котором углеводородные цепи молекул фосфолипидов находятся жидкокристаллическом состоянии. липидный бислой погружены и встроены белков, способные молекулы мембране. передвигаться В Следовательно, мембраны не являются системами, состоящими жесткофикси-рованных элементов; жидкостно-мозаичная модель представляет мембрану как "море" жидких липидов, в котором плавают "айсберги" белков.

Жидкостно-мозаичная модель биологической мембраны (Сингер и Николсон, 1972)

Мембранные липиды: липидный биослой

Липиды мембран представлены тремя основными классами полярных липидов: фосфолипидами (глицеро- и сфингофосфолипиды), гликолипидами и стероидами. Все мембранные липиды (несмотря на различие в составе) являются амфифильными молекулами, построены по единому плану и имеют две области, отличающиеся сродством к воде: гидрофобные радикалы (хвосты) и полярные головки.

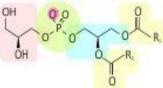

Фосфолипиды

Глицерофосфолипиды

Фосфатидилхолин

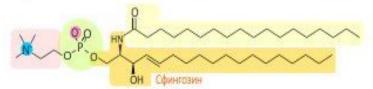
Холин

Фосфат Глицерол Жирные кислоты


C16:0 + C18:1 = ПОФХ $C16:0 \times 2 = ДПФХ$

Фосфатидилглицерол

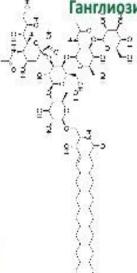
Фосфатидилэтаноламин


Глицерол Фоофат Глицерол

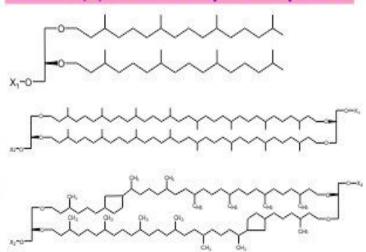
Этаноламин Фоофат Глицерол

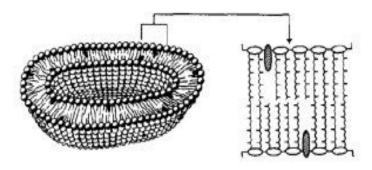
Сфингофосфолипиды

Сфингомиелин



Стероиды


Холестерол


Гликолипиды

Ганглиозид GM1

Липиды мембран архей

Примерный липидный состав различных клеточных мембран (по Д. Албертсу)

Липиды	Процент от общего содержания липидов					
	Плазмат. мембрана		Миелин	Внешняя и	ЭПР	E. coli
	клеток печени	эритроцитов		внутр. Мембрана митохондрий		
Холестерол	17	23	22	3	6	0
Фосфатидилэтан оламин	7	18	15	35	17	70
Фосфатидилсери н	4	7	9	2	5	Следы
Фосфатидилхол ин	24	17	10	39	40	0
Сфингомиелин	19	18	8	0	5	0
Гликолипиды	7	3	28	Следы	Следы	0
Другие	22	13	8	21	27	3

Мембранные белки

По расположению белков в мембране, способу ассоциации с липидным биослоем их можно разделить на:

- поверхностные (или периферические) мембранные белки, связанные с гидрофильной поверхностью липидного биослоя;
- погруженные в гидрофобную область биослоя интегральные мембранные белки.

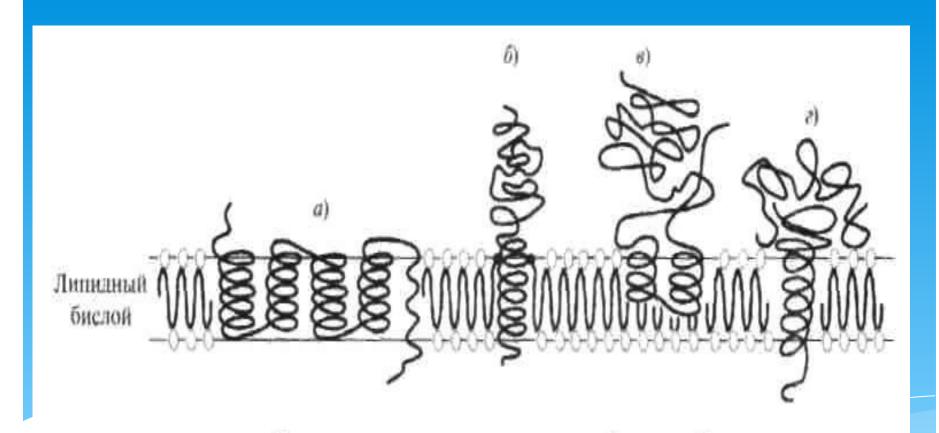
Белки мембраны

Интегральные (трансмембранные)

Полуинтегральные (рецепторные)

Наружные (периферические)

- •Проходят через всю толщу мембраны
- •Создают в мембране гидрофильные поры (транспорт веществ)


- •Погружены в толщу фосфолипидных слоев
- •Выполняют рецепторные функции

- •Лежат снаружи мембраны, примыкая к ней
- •Выполняют многообразные функции ферментов

Белки-переносчики

Каналообразующие белки

Различные типы организации мембранных белков:

а — белок почти полностью погружен в мембрану; б — сравнительно небольшая гидрофобная часть белка погружена в мембрану, пересекая всю ее толшину; в — гидрофобный «якорь» белка проникает только на расстояние фосфолипидного монослоя; г — периферический белок взаимодействует с экспонированной на поверхность бислоя частью интегрального белка

Свойства биологических мембран

- * 1.Замкнутость мембран.
- * В процессе самосборки липидные бислои замыкаются сами на себя, что приводит к устранению свободных краев, на которых гидрофобные хвосты могли бы соприкасаться с водой. Это приводит к образованию закрытых отсеков в клетке (компартментов).

- **2.Асимметричность мембран.** По химическому составу наружная поверхность мембран отличается от внутренней. Например, в мембране эритроцитов фосфатидилхолин и сфингомиелин находятся во внешней половине бислоя, а фосфатидилсерин и фосфатидилэтаноламин – во внутренней. В свою очередь, асимметрия полярных головок приводит также к асимметрии распределения углеводородных хвостов, так как хвосты жирных кислот фосфатидилхо-лина и сфингомиелина более насыщенные, чем фосфатидилэтаноламина и фосфатидилсерина. Следовательно, текучесть внутреннего монослоя будет несколько больше, чем наружного.
- * Наиболее асимметрично распределены в плазматической мембране гли-колипиды и гликопротеины. Углеводные части гликолипидов и гликопротеи-нов выходят на наружную поверхность, иногда образуя сплошное покрытие на поверхности клетки гликокаликс.

3.Динамичность мембран. Отдельные молекулы мембранных липидов и белков способны свободно перемещаться в мембране, т. е. они сохраняют способность к диффузии. Так, молекулы липидов с высокой скоростью перемещаются в плоскости мембраны (латеральная диффузия). Они легко меняются местами со своими соседями в пределах одного монослоя примерно 10 раз в секунду. Молекулы белков, так же как и липидов, способны к латеральной диффузии, однако скорость их диффузии в несколько раз ниже, чем молекул липидов. Перемещение мембранных белков в латеральной плоскости может быть ограничено вследствие притяжения между функционально связанными белками и образования кластеров, что в конечном счете приводит к их мозаичному распределению в липидном слое.

4.Избирательная проницаемость мембран. Это свойство обеспечивает регуляцию транспорта в клетку необходимых молекул, а также удаления из клетки продуктов метаболизма, т. е. активный обмен клетки и ее органелл с окружающей средой. Избирательный транспорт необходим также для поддержания трансмембранного градиента ионов, служит основой всех биоэнергетических механизмов, определяет эффективность процессов рецепции, передачи нервного возбуждения и т. п.

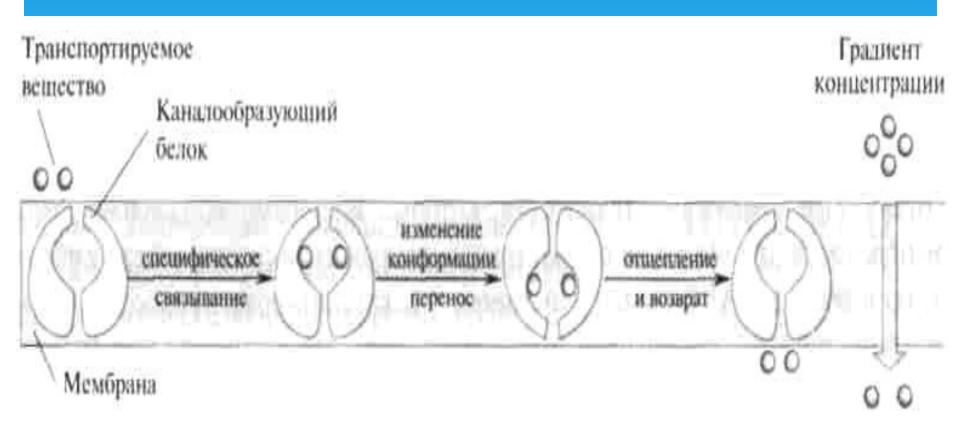
Механизмы мембранного транспорта

Липидные бислои в значительной степени непроницаемы для подавляющего большинства веществ, и поэтому перенос через липидную фазу требует значительных энергетических затрат.

Различают активный транспорт и пассивный транспорт (диффузию).

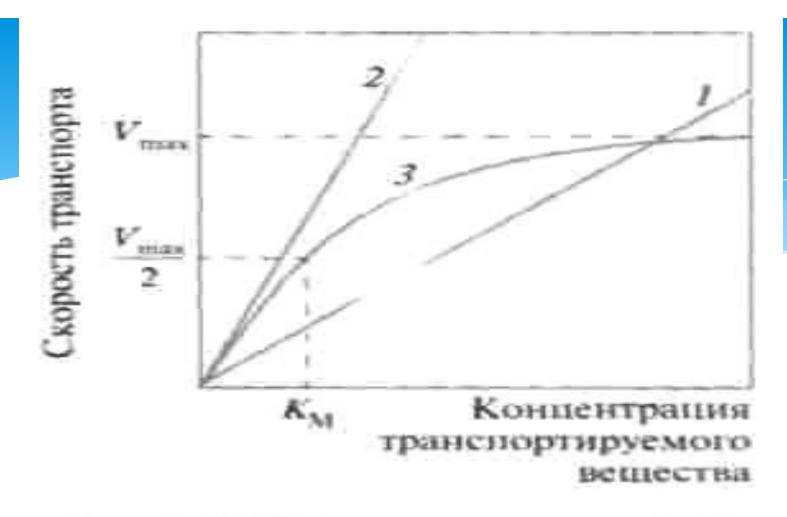
Классификация видов мембранного транспорта

Пассивный транспорт


Пассивный транспорт – это перенос молекул по концентрационному или электрохимическому градиенту, т. е. он определяется только разностью концентрации переносимого вещества на противоположных сторонах мембраны или направлением электрического поля и осуществляется без затраты энергии АТФ. Возможны два типа диффузии: простая и облегченная. Простая диффузия происходит без участия мембранного белка. Скорость простой диффузии хорошо описывается обычными законами диффузии для веществ, растворимых в липидном бислое; она прямо пропорциональна степени гидрофобности молекулы, т. е. ее жирорастворимости, а также градиенту концентрации. Механизм диффузии водорастворимых веществ менее изучен. Перенос вещества через липидный бислой, например таких соединений, как этанол, возможен через временные поры в мембране, образованные разрывами в липидном слое при движении мембранных липидов. По механизму простой диффузии осуществляется трансмембранный перенос газов (например, O_2 и CO_3), воды, некоторых простых органических ионов и ряда низкомолекулярных жирорастворимых соединений. Следует помнить, что простая диффузия осуществляется неизбирательно и отличается низкой скоростью.

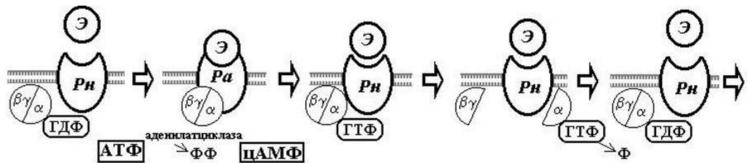
Облегченная диффузия, в отличие от простой диффузии, облегчена участием в этом процессе специфических мембранных белков. Следовательно, облегченная диффузия – это диффузионный процесс, сопряженный с химической реакцией взаимодействия транспортируемого вещества с белком-переносчиком. Этот процесс специфичен и протекает с более высокой скоростью, чем простая диффузия.

Известны два типа мембранных транспортных белков: белки-переносчики,


называемые транслоказами или пермеазами, и белки каналообразующие. Транспортные белки связывают специфические вещества и переносят их через бислой по градиенту их концентрации или электрохимическому потенциалу, и, следовательно, для осуществления этого процесса, как и при простой лиффузии, не требуется затраты энергии АТФ

Механизм облегченной диффузии каналообразующими белками

До настоящего времени структура и механизм функционирования транспортных белков изучены недостаточно, что в значительной степени связано с трудностью их выделения в солюбилизированной форме. Повидимому, наиболее распространенным путем трансмембранного переноса веществ по механизму облегченной диффузии является транспорт с помощью каналообразующих веществ. Белки – переносчики всех типов, напоминают связанные с мембранами ферменты, а процесс облегченной диффузии – ферментативную реакцию по ряду свойств: 1) транспортные белки обладают высокой специфичностью и имеют участки (сайты) связывания для транспортируемой молекулы (по аналогии – субстрата); 2) когда все участки связывания заняты (т. е. белок насыщен), транспорта достигает максимального скорость значения, обозначаемого V_{max} ; 3) белок-переносчик имеет характерную для него константу связывания K_{M} , равную концентрации транспортируемого вещества, при которой скорость транспорта составляет половину ее максимальной величины (аналогично К для системы фермент-субстрат), транспортные белки чувствительны к изменению значения рН среды; 4) они ингибируются конкурентными или неконкурентными ингибиторами. Однако в отличие от ферментной реакции молекула транспортируемого вещества претерпевает ковалентного превращения не взаимодействии с транспортным белком


Кинетика простой (I) и облегченной диффузии при участии каналообразующего белка (2) и белка-переносчика (3)

Активный транспорт

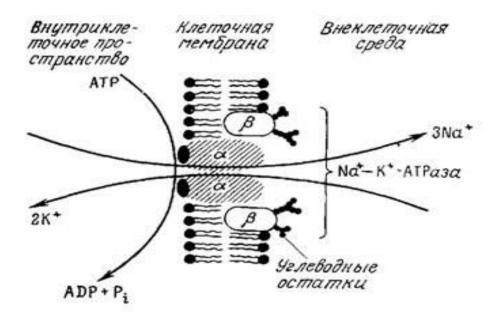
АКТИВНЫЙ ТРАНСПОРТ ИОНОВ

Система активного транспорта включает:

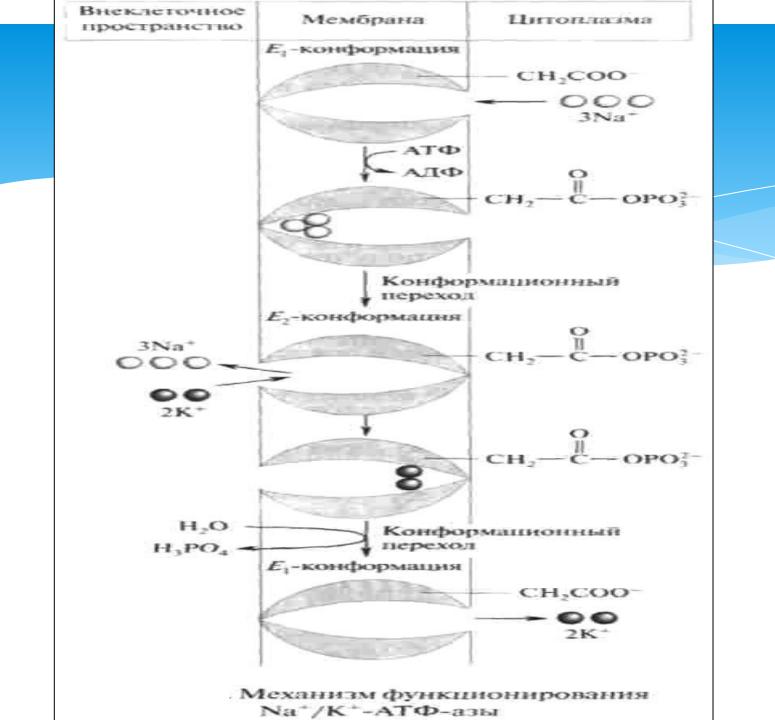
- 1. АТФ-азу
- 2. Ионофор мембранный белок, один из компонентов которого (субъединица) подвергается промежуточному фосфорилированию при помощи АТФ.

Примечание: Э-эйкозаноид, Рн-неактивный рецептор, Ра-активный рецептор, Ф-фосфат

В зависимости от способа использования энергии для транспорта молекул выделяют первично- и вторично-активный транспорт.


При **первично-активном** транспорте донором энергии является непосредственно молекула АТФ и процесс переноса вещества через мембрану сопровождается ее гидролизом.

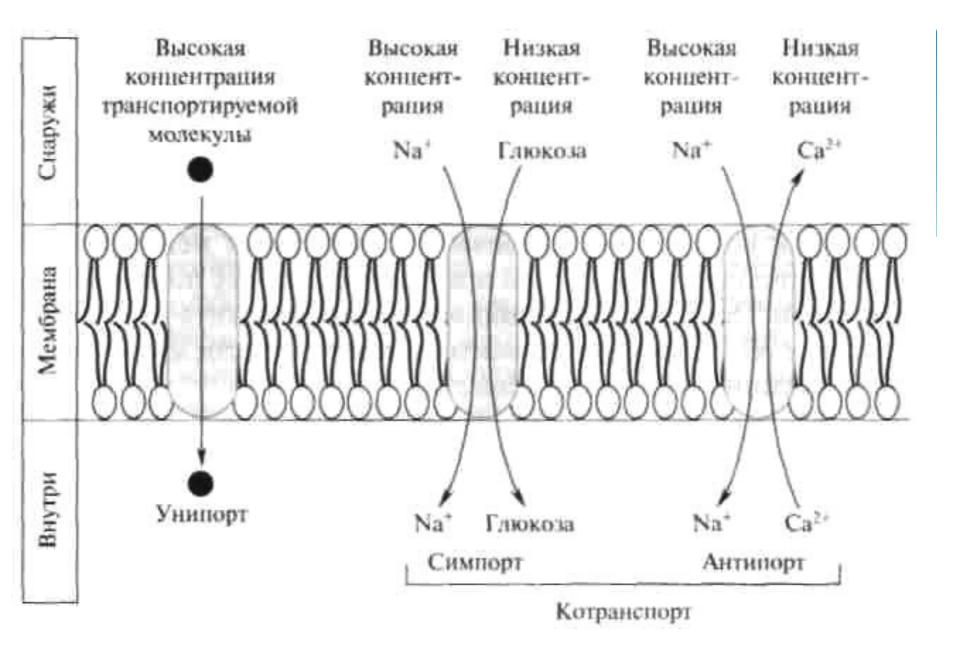
При вторично-активном транспорте градиент ионов (Na⁺ K⁺, H⁺ и др.), созданный на мембране функционированием систем первично-активного транспорта, используется для транспорта других молекул, например углеводов, некоторых аминокислот, анионов и др.


Известны три основных типа первично-активного транспорта ионов:

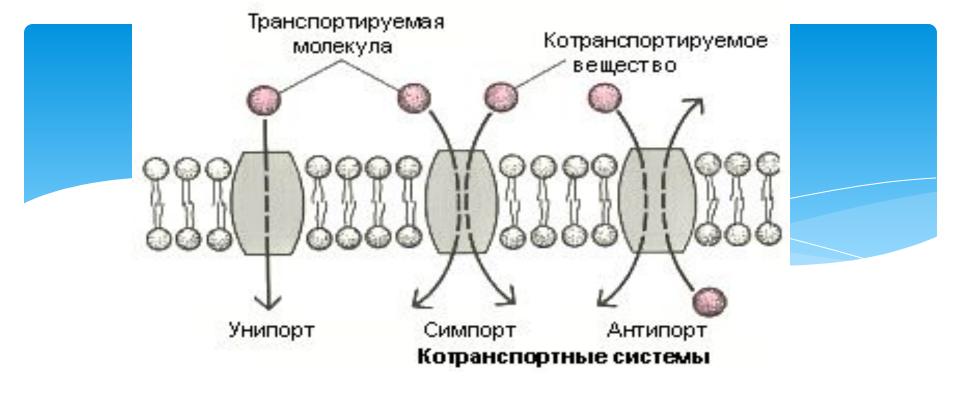
- натрий-калиевый насос Na⁺/K⁺-аденозинтрифосфатаза (Na⁺/K⁺-ATФ-аза), переносящий ионы натрия из клетки, а калия в клетку;
- кальциевый насос Ca²⁺-ATФ-аза, который транспортирует Ca²⁺ из клетки или цитозоля в саркоплазматический ретикулум;
- H⁺-ATФ-аза протонный насос, функционирующий в сопрягающих мембранах, в том числе в митохондриальной мембране, где H⁺-ATФ-аза работает в обратном направлении, используя D m H⁺, образующийся в дыхательной цепи для синтеза ATФ

Na⁺/**K**⁺-**AT**Ф-*aзa* была открыта в 1957 г. Й. Скоу во фракции плазматических мембран нервов краба, впоследствии она была обнаружена во всех исследованных клетках животных, особенно велико ее содержание в органах, осуществляющих интенсивный солевой обмен (почки) или выполняющих электрическую работу (мозг, нервы). № Na⁺/K⁺-ATФ-аза представляет собой олигомер-ный белок, состоящий из субъединиц двух типов (аир), входящих в состав фермента в эквимо-лярных количествах. Большая а -субъединица (~112 kDa) формирует каталитически активный центр, осуществляющий гидролиз АТФ; меньшая р-субъединица (~45 kDa) гликозилирована, при этом углеводные цепи экспонированы на наружной стороне мембраны.

Na+—K+-насос (Na+—K+-ATPаза) транспортирует Na+ из клетки и K+ в клетку; движущей силой этого процесса является гидролиз ATP.



Виды переноса веществ через мембрану


Вид перемещения вещества через мембрану зависит как от свойств транспортируемого соединения, так и от особенностей состава и структурной организации мембраны.

Трансмембранный перенос может осуществляться по типу унипорта, сим-порта или антипорта.

Унипорт – наиболее простой вид переноса какого-либо растворенного вещества с одной стороны мембраны на другую, осуществляемый по механизму простой или облегченной диффузии.

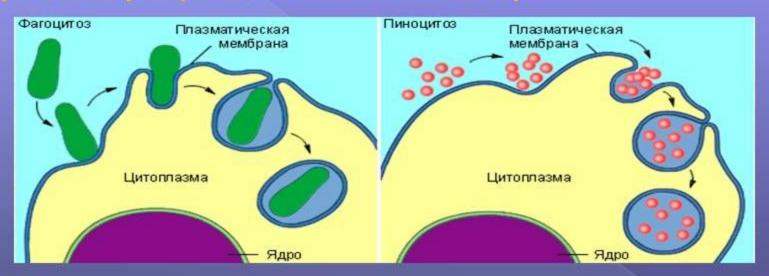
. Транспорт веществ через мембрану

* Котранспортные системы – это транспортные белки, переносящие совместно два различных вещества по типу симпорта или антипорта, т. е. переносчик имеет центры связывания для обоих веществ.

Симпорт – перенос одного вещества зависит от одновременного (или последовательного) переноса другого вещества TOM В же Например, направлении. глюкоза, аминокислоты могут транспортироваться Na⁺-зависимой системой симпорта. При этом ион Na⁺ транспортируется градиенту концентрации (вторично-активный транспорт), а молекула глюкозы, присоединенная тому же переносчику, против градиента концентрации.

Антипорт – перенос одного вещества градиенту концентрации приводит к перемещению вещества, другого присоединенного к этому переносчику с другой стороны мембраны противоположном направлении против градиента его концентрации.

Экзоцитоз и эндоцитоз


Крупные макромолекулы (белки, полинуклеотиды или полисахариды), даже крупные частицы могут как поглощаться, так и секретироваться клетками. При их переносе происходит последовательное образование и слияние окруженных мембраной пузырьков (везикул), т. е. перенос веществ вместе с частью плазматической мембраны. Если таким путем осуществляется транспорт растворенных веществ – это пиноцитоз (от греч. пинос – пить), если твердых – фагоцитоз (от греч. фагос – есть, цитос – клетка). При процессе эндоцитоза поглощенное вещество окружается небольшим участком мембраны, который вначале впячивается, а затем отщепляется, образуя внутриклеточный пузырек, содержащий захваченный клеткой материал. Большинство частиц, поглощенных при эндоцитозе, попадает затем в лизосомы, где они подвергаются деградации.

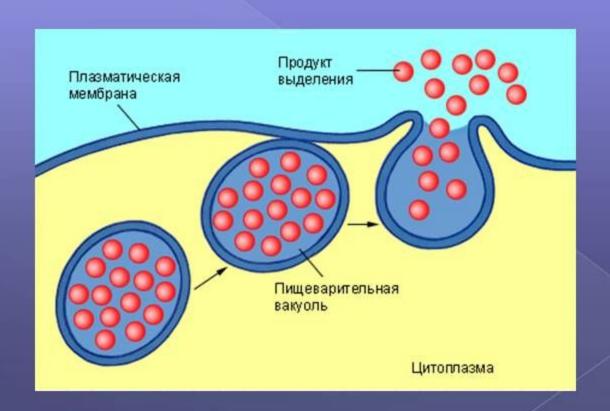
Подобный же процесс, только в обратной последовательности, называется экзоцитозом. В эукариотических клетках постоянно секретируются различные типы молекул с помощью процесса экзоцитоза. Некоторые из них могут оставаться на мембране клетки и становиться ее частью, другие – выходят во внеклеточное пространство. Так, секреторные белки упаковываются в транспортные пузырьки в аппарате Гольджи и затем переносятся непосредственно к мембране.

Эндоцитоз

При эндоцитозе мембрана образует впячивания, которые затем трансформируются в пузырьки или вакуоли.

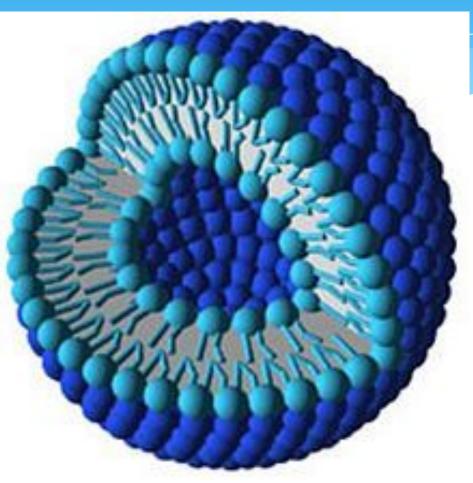
! процесс требует дополнительной энергии

Различают

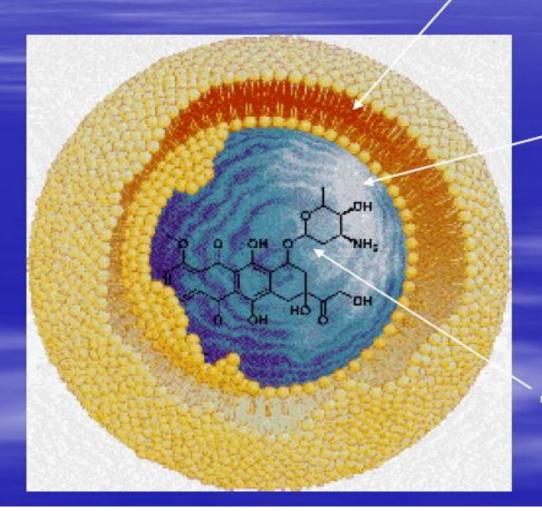

фагоцитоз – поглощение твёрдых частиц (например, лейкоцитами крови) – и

<u>пиноцитоз</u> – поглощение жидкостей

Экзоцитоз

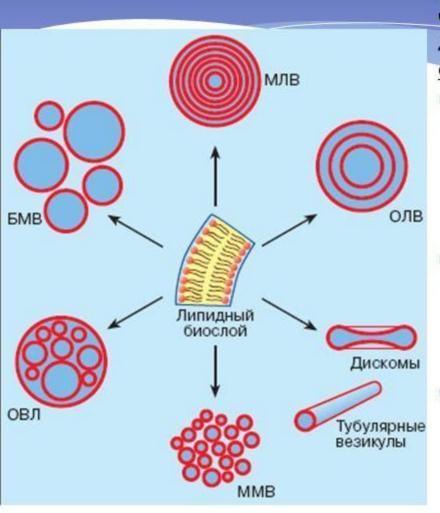

экзоцитоз – процесс, обратный эндоцитозу; из клеток выводятся непереварившиеся остатки твёрдых частиц и жидкий секрет.

! процесс требует дополнительной энергии


Липосомы – модельные мембраны

Липосомы – это самопроизвольно возникающие при диспергировании полярных липидов в воде пузырькообразные частицы, которые состоят из одного или нескольких замкнутых липидных бислоев, разделяемых водными промежутками. Их используют в биохимических исследованиях как простейшую модель биологических мембран.

Схема липосомы


Бислой

Водное «ядро»

Действующее вещество

Виды

В зависимости от размера частиц и числа образующих их липидных слоев липосомы подразделяются на 3 основных типа:

- Многослойные или
 мультиламелярные липосомы
 (МЛВ), имеющие диаметр 5-10 мкм
 и насчитывающие до нескольких
 десятков, а то и сотен липидных
 бислоев;
- Малые моноламелярные липосомы (ММВ), образованные одинамирным липидным бислоем и имеющие диаметр в пределах 20-50 нм;
- Крупные моноламелярные липосомы (БМВ), также образованные одиночным бислоем, с диаметром от 50 до 200 нм и больше

В настоящее время липосомы используются как носители лекарств, так как их можно "начинить" различными лекарственными веществами. Состав липидов липосом можно произвольно варьировать и таким образом направленно изменять физико-химические свойства. Разработаны также методы включения функционально активных белков в мембрану липосомы. Такие искусственные белково-липидные структуры называются протеолипосомами. В липосомы можно вводить тканеспецифические антитела, что позволяет обеспечивать направленный транспорт включенных в них лекарств в определенные органы и ткани.

В настоящее время для изучения и оценки проницаемости мембран используют различные методы: осмотические, индикаторные, радиоактивные, измерения электрической проводимости и др. Изучение проницаемости мембран не всегда удобно проводить на нативных объектах, так как они представляют собой гетерогенные и трудноконтролируемые по составу структуры. Более удобны для этих целей модельные мембраны, в частности липосомы.

В медицине наиболее интересные перспективы использования липосом связаны с химиотерапией рака, лечением диабета, артрита, лейшманиоза, а также коррекцией ферментной недостаточности.