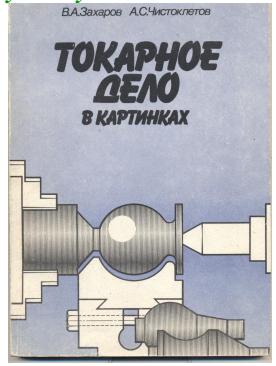
Профессия – слесарь механосборочных работ. Предмет – «Основы резания металлов на металлов на

металлорежущих станках»


Раздел «Токарная обработка металла»

категории

Автор-составитель учитель высшей МСКОУ школыинтерната 2-го вида № 12 г.Челябинска. Лихватских Валерий Дмитриевич.

Рекомендуемые учебники.

Тема №1 «Процесс механической обработки металла резанием».

Nº п/п	Содержание слайд - фильма.	№ слайда.
1.	Назначение обработки металлов резанием.	3.
2.	Резец и его работа.	4-5.
3.	Образование стружки.	6.
4.	Токарные резцы.	7 - 8.
5.	Материалы, применяемые для изготовления резцов.	9.
6.	Износ и заточка резцов.	10.
7.	Шлифовальные круги.	11.
8.	Основные элементы процесса резания.	12.
9.	Контрольные вопросы	13.

Процесс механической обработки металлов резанием.

Назначение обработки металлов резанием.

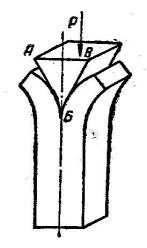
В машино строении в качестве основных материалов применя отся металлы. Значительно меньше используются дерево, пластмассы, резина и другие неметаллические материалы.

Металлические, как и все другие, детали машин должны иметь заданные форму, размеры и шероховатость поверхности.

Способы получения деталей в машиностроении:

Отливкой жидкого металла в формах. Ковкой, штамповкой и прокаткой металлов.

Обработка металлов резанием.


Первыми двумя способами получают заготовки в виде поковок, штамповок, проката и литья. Такие заготовки обычно имеют неровные поверхности, они неточны по форме и размерам. В таком грубом виде их очень редко используют в качестве деталей машин.

Окончательную форму, размеры и шероховатость поверхности большинство деталей получает в результате обработки резанием на металлорежущих станках.

На этих станках заготовки обрабатывают различными режущими инструментами — резцами, свёрлами, метчиками и т. п. инструменты срезают с заготовок лишний металл, который называется **припуском на обработку.** В результате обработки на станках заготовкам придают требуемую форму, правильные размеры и необходимую шероховатость поверхности, т. е. заготовки превращаются в детали.

Резец и его работа.

Рабочая часть любого режущего инструмента представляет собой клин. Форма клина, как показано на рисунке представляет собой угол АБВ. Если к клину приложить усилие Р, то под его действием лезвие клина углубится в материал. Оно преодолеет сцепление его частиц и своими боковыми поверхностями раздвинет материал в стороны.

Puc. 1 Клин и его работа.

Работа резца похожа на работу клина. Под действием силы Р (рис.2) резец своей режущей кромкой вдавливается в металл. Слой металла, прилегающий к передней поверхности АБ резца, непрерывно сжимается. Когда усилие сжатия начинает превышать силы сцепления частиц металла, эти частицы отделяются в виде стружки.

Любой резец (рис.3) состоит из двух основных частей — головки и стержня (или тела).

Головка является рабочей (режущей) частью резца; стержень (тело резца) служит для закрепления резца в резцедержателе станка.

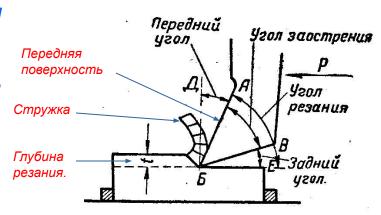
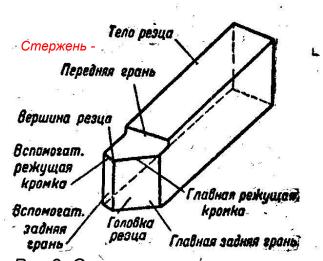
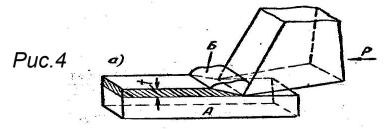
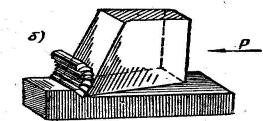


Рис.2 Работа резца.

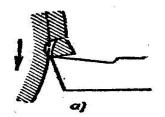


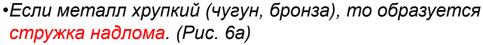

Рис.3 Основные элементы резца:

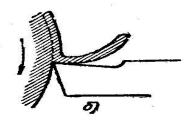
Запомните! 1.Основную работу резания выполняет главная режущая кромка. 2. Чем острее угол заострения резца, тем легче врезается резец в обрабатываемый металл.


Образование стружки.

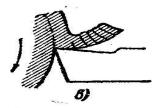
При резании металла стружка начинает образовываться тогда, когда резец с силой Р давит на заготовку в направлении, указанном стрелкой. При этом сила Р превышает силы сцепления частиц металла между собой. (Рис.4).


При работе резца по мере его перемещения один за другим подвергаются сжатию и сдвигаются следующие частицы металла, образующие стружку (Puc.5).


Начало образования стружки.

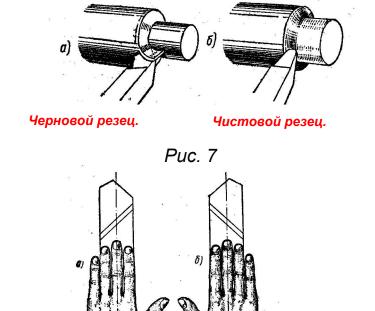


Puc.5 Образование стружки при дальнейшем перемещении резца.



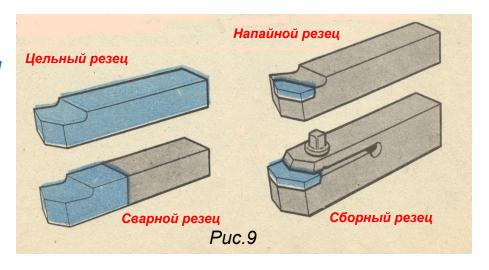
При резании разные металлы дают стружку разной формы:

•Если металл вязкий, мягкий (мягкая сталь, алюминий, медь, латунь), то образуется сливная стружка. (Puc.6б).


•Если металл твёрдый и вязкий (твёрдая сталь), то образуется стружка скалывания. (Рис. 6в)

Puc.6

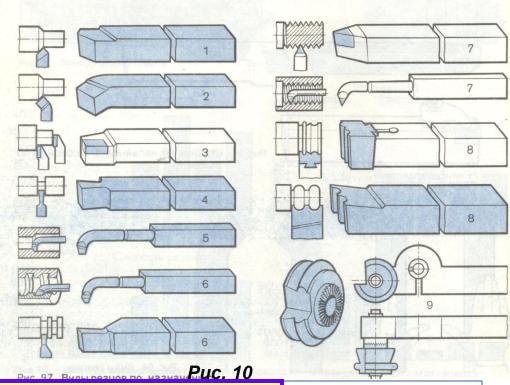
Токарные резцы.


Токарные резцы подразделяются:

- 1. По характеру обрабатываемой поверхности на обдирочные (черновые) и чистовые; (Рис7)
- 2. По направлению движения подачи – на правые и левые; (Puc8)

а. левый резец. б. правый резец

3. По способу изготовления
– на цельные, сварные,
напайные и сборные.
(Puc.9)



Токарные резцы (продолжение)

- 4. По назначению (выполняемой работе):
- 1. проходной прямой; 2. проходной отогнутый; 3. подрезной; 4.

отрезной;

- 5. расточной;
- 6. канавочный;
- 7. резьбовой;
- 8. фасонные;
- 9. фасонные виброгасящие

Это интересно! История донесла до нас сведения что царь Пётр I был искусным (высококвалифицированным) токарем. До настоящего времени в музее г. Санкт — Петербурга хранится токарно-копировальный станок, на котором любил работать царь и несколько изделий изготовленных им собственноручно, в т. ч. человеческое ухо выточенное из бивня мамонта.

Материалы, применяемые для изготовления резцов.

К материалу резцов предъявляются особые требования.

- 1. Твёрдость резца должна быть больше твёрдости обрабатываемой детали (иначе резец не будет резать).
- 2. Должен сохранять свою твёрдость при высоких температурах нагрева (при резании рабочая часть резца сильно нагревается) т. е. обладать хорошей теплостойкостью.
- 3. Режущая кромка резца должна хорошо сопротивляться износу от истирания т. е. обладать высокой <mark>износостойкостью</mark>.
 - 4. обладать высокой вязкостью (т. е. хорошо сопротивляться ударным нагрузкам).

Для изготовления режущих инструментов, в том числе токарных резцов широко применяются:

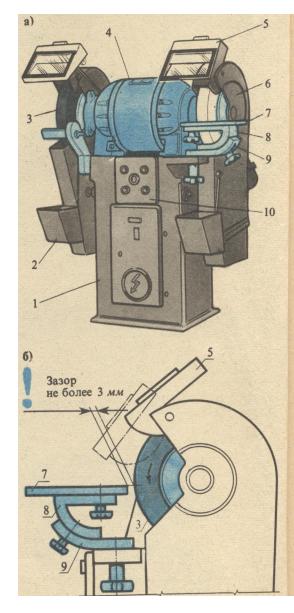
- 1. Быстрорежущие инструментальные стали это легированные инструментальные стали, которые содержат от 6 до 18 процентов вольфрама и от 3 до 4,6 процентов хрома, а также другие легирующие элементы. Марки широко применяемых быстрорежущих сталей: Р9, Р12, Р6М5, Р9К5.
- 2. Металлокерамические твёрдые сплавы это сплавы, которые изготавливают из порошков вольфрама (В), титана (Т), кобальта (К), и углерода (С). Смесь прессуют под высоким давлением, получая небольшие пластинки, которые затем спекают при температуре 1400 градусов. Теплостойкость таких сплавов достигает 1000 градусов. Марки широко применяемых металлокерамических сплавов: ВК6, ВК8, Т5К10, Т15К6.

Износ и заточка резцов.

В результате работы рабочая часть резца изнашивается.

Работать изношенным резцом нельзя, так как снижается точность и качество обработки, снижается производительность труда.

Изношенный (затупленный) резец затачивают.


Для заточки резцов используют заточной станок.

На рис.11а изображён общий вид станка, на рис.11б показана схема установки подручника.

Основные части заточного станка:

1. Станина,

- 8. Поворотный сегмент,
- 2. Резервуар для воды,
- 9. Поворотный столик,
- 3. Шлифовальный круг, 10. Пульт управления.
- 4. Шпиндельная головка,
- 5. Защитный экран,
- 6. Защитный кожух,
- 7. Регулируемый подручник,

Puc.11

Шлифовальные круги.

Шлифовальные круги изготавливают из твёрдых минеральных зёрен абразивного то есть режущего, материала скреплённых связующим веществом - связкой.

В качестве абразивного материала применяют:

- Электрокорунд нормальный (обозначается буквой Э),
- Электрокорунд белый (ЭБ),
- Карбид кремния чёрный (КЧ),
- Карбид кремния зелёный (КЗ).

Наиболее распространённые связки:

- Керамическая (К),
- Бакелитовая (Б).

Шлифовальные круги изготавливают различной твёроости:

- 1. мягкие (M1, M2, M3)
- 2. Среднемягкие (СМ1, СМ2)
- 6. Весьма твёрдые (BT1, BT2)

3. Средние (С1, С2)

- 7. Чрейзвычайно твёрдые (ЧТ1, ЧТ2).
- 4. Среднетвёрдые (СТ1, СТ2, СТ3)
- 5. *Твёрдые (Т1, Т2)*

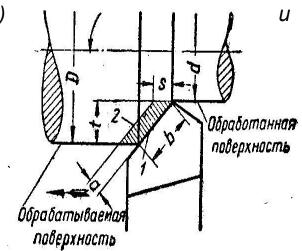
Запомните!

Выбор шлифовальных кругов с учётом их твёрдости и применяемого абразивного материала зависит от материала из которого изготовлен режущий инструмент.

Основные элементы процесса резания.

Основными элементами процесса резания являются: глубина резания, подача, скорость резания.

Глубина резания — это величина слоя металла, снимаемого резцом за один его проход по детали. Глубина резания обозначается буквой t (тэ) и измеряется всегда в мм.


Подача — это величина перемещения резца за один оборот обрабатываемой детали. Подача обозначается буквой S (эс) и измеряется в миллиметрах за один оборот детали мм/об.

Скорость резания — это длина пути, пройденная за одну минуту режущей кромкой инструмента относительно обрабатываемой поверхности заготовки.
Скорость резания обозначается буквой V (ве)

измеряют в м/сек.

Запомните!

Скорость резания выбирают по справочнику в зависимости от глубины резания, подачи, материала заготовки, материала резца и вида обработки.

Контрольные вопросы.

- 1. Какими способами можно получить детали в машиностроении?
- 2. При каком способе обработки можно получить детали высокой точности?
- 3. Из каких частей состоит токарный резец?
- 4. Как различают токарные резцы по характеру обрабатываемой поверхности?
- 5. Как различают токарные резцы по направлению подачи?
- 6. Как различают токарные резцы по назначению?
- 7. Как различают токарные резцы по способу изготовления?
- 8. Какие материалы применяют для изготовления резцов?
- 9. Какие виды стружки могут быть образованы при резании металлов различной твёрдости и вязкости?
- 10. Из каких основных частей состоит заточной станок?
- 11. Из каких материалов изготавливают шлифовальные круги?
- 12. Как различают шлифовальные круги по твёрдости?
- 13. Что называется глубиной резания?
- 14. Что называется подачей?
- 15. Что называется скоростью резания?
- 16. Какие показатели влияют на выбор скорости резания?