Поглощение промывочной жидкости

Цели

По окончании данного модуля вы сможете:

- Понять, что такое поглощение промывочной жидкости и как оно влияет на операции бурения
- Будете различать типы поглощений промывочной жидкости
- Описать методы предотвращения поглощений промывочной жидкости
- Сможете порекомендовать лучшее средство устранения того или иного типа поглощения

Что такое поглощение промывочной жидкости?

Поглощение бурового раствора пластом:

- Частичное (течь)
- Полное (без выхода раствора на поверхность)

Даже в хорошо изученном районе сложно дать универсальную рекомендацию по борьбе с поглощениями

Необходимо применить систематический подход:

- профилактический
- корректирующий

Причины поглощения промывочной жидкости

Поглощение промывочной жидкости происходит вследствие одного из двух следующих механизмов:

- Естественные поглощения: потеря раствора из-за естественного характера вскрываемых пород
- Искусственные поглощения: потеря раствора из-за искусственного превышения градиента гидроразрыва (некорректная технология бурения)

Классификация поглощений по степени тяжести

- Поглощение вследствие течи (1-10 баррель/час)
 - Не путать с удалением раствора вместе со шламом
- Частичное поглощение (10-50 баррель/час)
- Сильное поглощение (50-100 баррель/час)
- Полное поглощение (>100 баррель/час)

Проблемы с поглощением промывочной жидкости?

Поглощение промывочной жидкости = Дополнительные расходы

Бурение	Цементирование	Заканчивание
Потеря бурового раствора	Сокращение подъема цемента	Потеря жидкости заканчивания
Потеря времени	в затрубе	Потеря времени
Плохое качество	Коррозия обсадной трубы	Повреждение пласта
цементирования	Недостаточная изоляция зон	Опасность ГНВП
Опасность ГНВП	Опасность заколонных	Потеря запасов
Прихват в скважине	перетоков	Потеря скважины
Потеря секции обсадной		
колонны		
Недостижение плановой		
глубины		
Выброс из скважины и		
глушение		
Подземные выбросы		
Нацесение вреда окрумающей		

Естественные поглощения

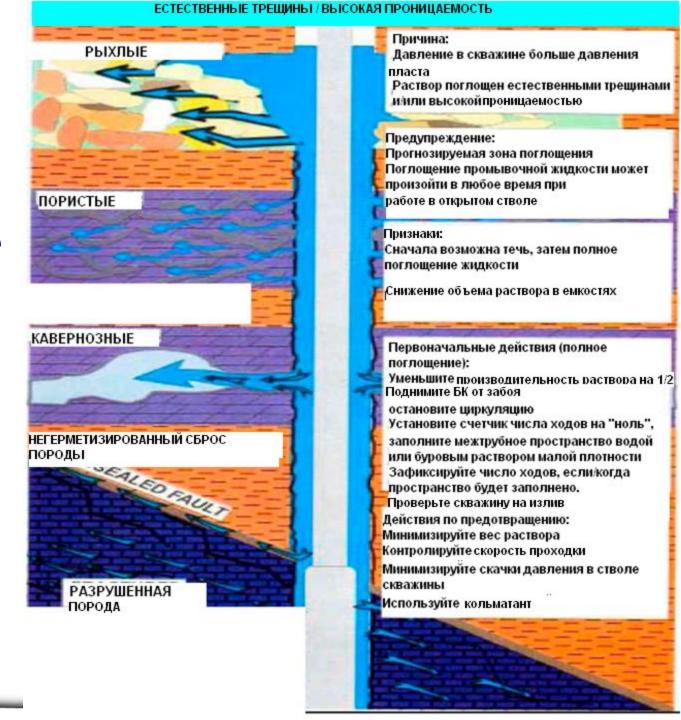
РЫХЛЫЕ ПОРОДЫ

- Песок, галька, сланцевые пропластки или рифовые породы, залегающие на небольшой глубине
- Высокая проницаемость (10...100 дарси)

ВЫСОКОПРОНИЦАЕМЫЕ/ ПОРОДЫ ПОД НИЗКИМ ДАВЛЕНИЕМ

• Чаще всего это истощенные платы песчаника

ЕСТЕСТВЕННАЯ ТРЕЩИНОВАТОСТЬ


 Данный тип поглощений наблюдается, главным образом, в трещиноватых сланцах или естественных трещинах

КАВЕРНОЗНЫЕ ПЛАСТЫ

Обычно наблюдаются в известняках под низким давлением или доломитах

Естественные поглощения

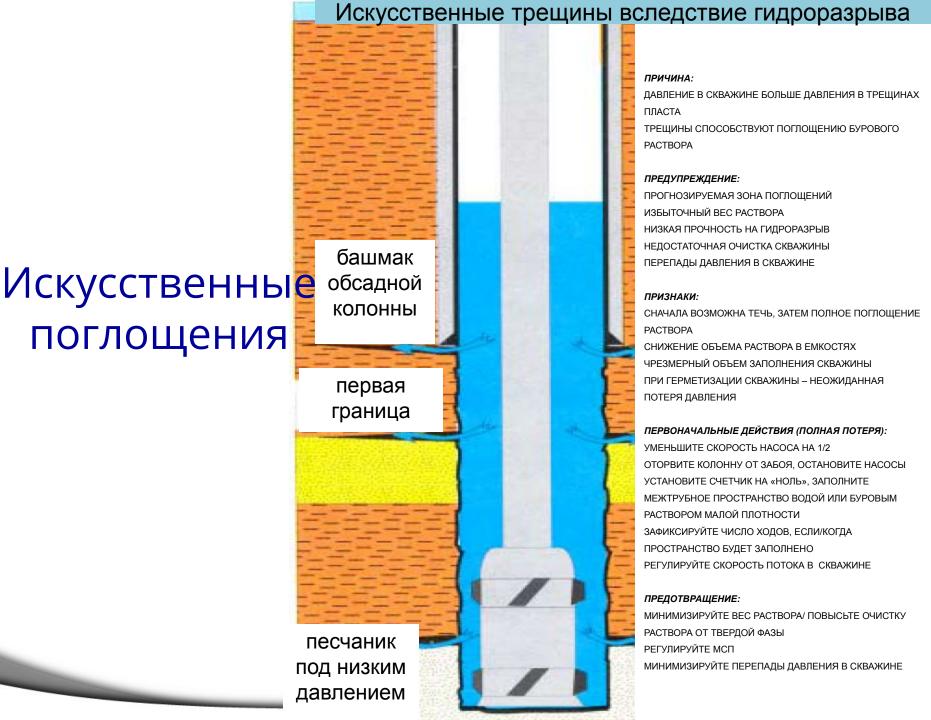
Искусственные поглощения

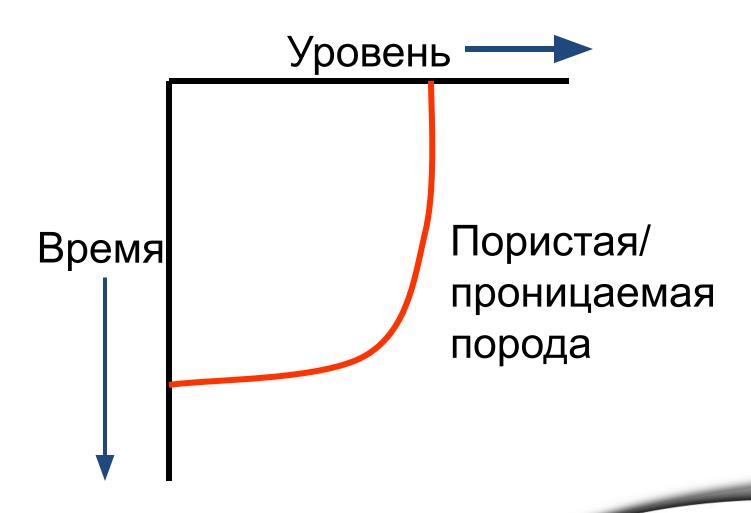
МЕХАНИЧЕСКИЕ ВОЗДЕЙСТВИЯ

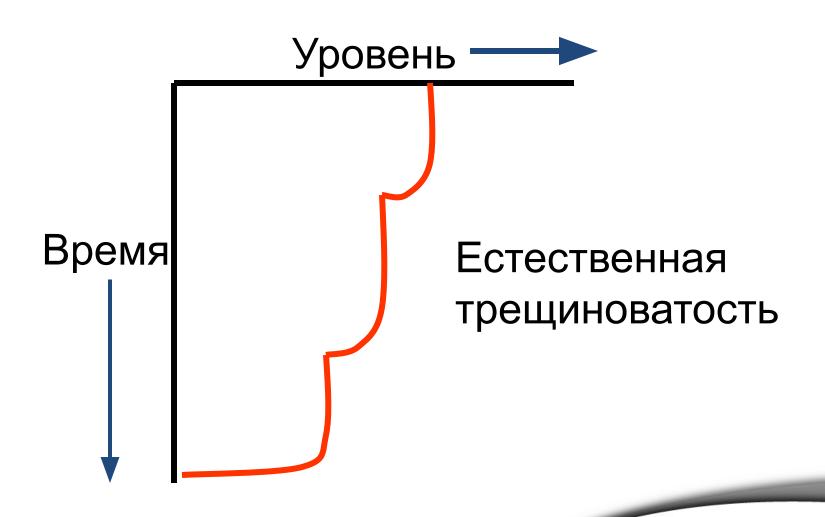
- Нарушение гидравлического режима
 - Превышение расхода и реологических параметров раствора приводит к повышению эквивалентной плотности циркуляции (ЭПЦ)
- Нарушение технологии бурения
 - Скачки давления нагнетания вызванные слишком быстрым включением насосов после наращиваний и СПО
 - Высокая скорость подъема или спуска труб (эффект поршневания / свабирования)
- Повышенная МСП
 - Избыток шлама в кольцевом пространстве повышает эквивалентную плотность циркуляции

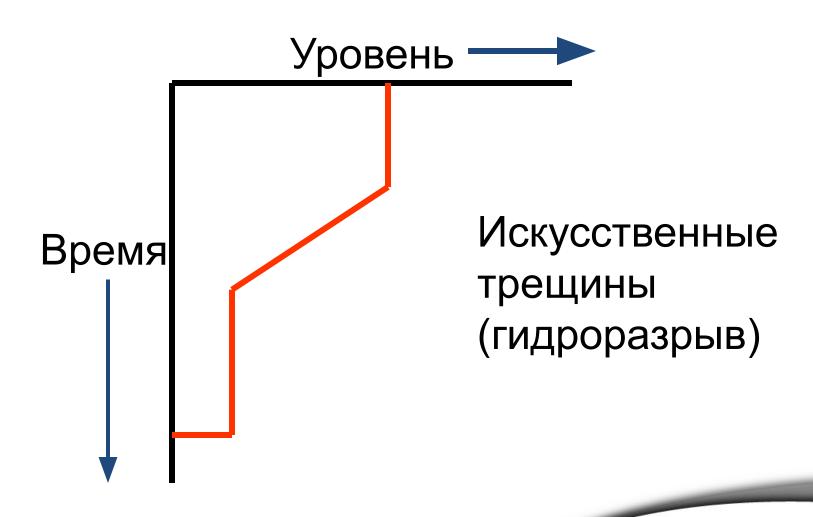
Искусственные поглощения

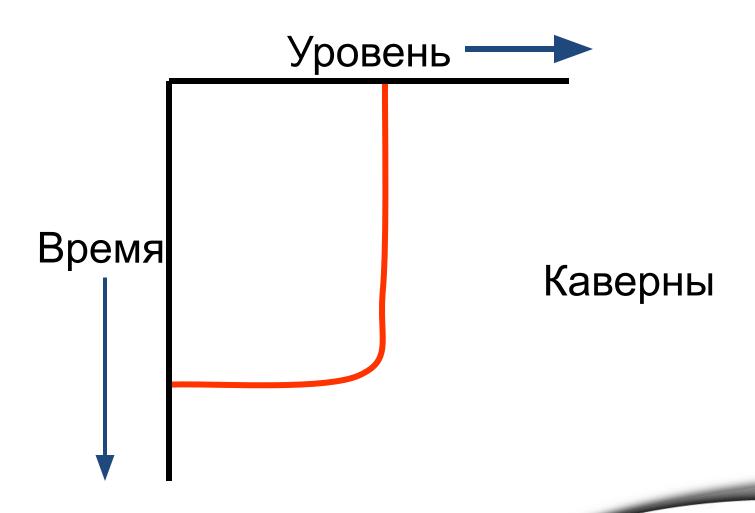
СОСТОЯНИЕ СТВОЛА СКВАЖИНЫ


- Осыпающийся или обрушивающийся сланец
 - Избыток твердых частиц в кольцевом канале повышает эквивалентную плотность циркуляции (ЭПЦ)
- Каверны в стволе скважины
 - Накопления бурового шлама в кавернах ствола могут попасть внутрь скважины, вызывая закупорку кольцевого пространства
- Шламовые дюны или оседание барита
 - Локальное повышение плотности раствора
- ГНВП и глушение скважины




Искусственные поглощения


СВОЙСТВА ПРОМЫВОЧНОЙ ЖИДКОСТИ, КОТОРЫЕ ВЛИЯЮТ НА ПОТЕРЮ ДАВЛЕНИЯ В ЗАТРУБНОМ ПРОСТРАНСТВЕ


- Чрезмерная вязкость и статическое напряжение сдвига
- Оседание барита
- Толстая фильтрационная корка, которая уменьшает гидравлический диаметр скважины
- Слишком высокая **плотность бурового раствора** или **слишком быстрое** увеличение плотности
- Коллоидная фаза (LGS) и высокие показания теста на метиленовую синь (MBT)

Классификация хим.реагентов для борьбы с поглощениями (LCM)

Вещества для борьбы с поглощениями, можно разделить на 6 типов:

- Волокнистые
- Зернистые
- Пластинчатые
- Смешанные
- Глиноцементные пачки с высоким показателем водоотдачи
- Дизельно-бентонитовые пачки
- Укрепляющие пробки
- Сетчатые полимеры

Классификация хим.реагентов для борьбы с поглощениями (LCM)

Вещества для борьбы с поглощениями имеют 3 типа помола:

- Мелкозернистые вещества
 - в большинстве случаев проходят через вибрационное сито и остаются в системе
- Среднезернистые вещества
 - имеют тенденцию к отсеиванию, не забивают насадки или приборы телеметрии (MWD)
- Крупнозернистые вещества
 - могут закупорить все, кроме бурильной трубы с открытым концом

Действия при поглощении

Степень поглощения

Размер LCM

Форма

Сильное

средний - крупный

Зернистые

средний - крупный

Волокнистые

средний – крупный

Пластинчатые

Полное

Силикат натрия и Цемент

Закачка дизельно-бентонитовой пачки

Полимерная обработка

Schlumberger

Предотвращение и контроль поглощения промывочной жидкости

Использование кольматанта (LCM) в буровом растворе

- 15 -20 фунтов/баррель концентрация кольматанта
- Проблемы!!!...может потребоваться обход вибросит

Поддержание хороших свойств бурового раствора

- контроль за содержанием твердой фазы
- плотность
- низкое ДНС (YP), ПВ (PV) и СНС
- низкие уровни МВТ

Поддержание минимальной ЭПЦ

- используйте программное обеспечение по гидравлике для оценки ЭПЦ
- измерения давления в межтрубном пространстве

Предотвращение и контроль поглощения промывочной жидкости

Минимизируйте эффект свабирования/поршневания

- Используйте программное обеспечение по гидравлике для определения скорости СПО и режим ускорения
- Производите промежуточные промывки при спуске в скважину
- Начните вращение трубы до включения насосов

Скважинное оборудование

- Удалите насадки из долота, если ожидаются крупные поглощения
- Минимизируйте количество элементов КНБК (КЛС, УБТ и полу-УБТ)

Обобщение

Любая система бурового раствора может быть использована при бурении в зонах поглощения:

 Важно иметь правильные хим.реагенты и следовать правильным практикам для минимизации поглощений

Необходимо детальное планирование, включая план действий и дерево решений по реагированию на поглощения промывочной жидкости

- Используйте лучшее доступное оборудование
- Оптимизируйте конструкцию скважины
- Следите за соблюдением технологии бурения