3. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ

3.4. Главное значение несобственного интеграла

Пусть f(x) определена и интегрируема на любом [a,b]. Главным значением интеграла по Коши называется величина

v. p.
$$\int_{-\infty}^{+\infty} f(x)dx = \lim_{R \to +\infty} \int_{-R}^{+R} f(x)dx.$$

Теорема. Если существует $\int_{-\infty}^{+\infty} f(x) dx$, то

v. p.
$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{+\infty} f(x)dx.$$

Пусть f(x) определена на $[a,c) \cup (c,b]$, интегрируема на любых $[a,c-\varepsilon]$ и $[c+\varepsilon,b]$, не ограничена в окрестности точки c. Главным значением интеграла по Коши называется предел

v. p.
$$\int_{-\infty}^{+\infty} f(x)dx = \lim_{\varepsilon \to 0+0} \left(\int_{a}^{c-\varepsilon} f(x)dx + \int_{c+\varepsilon}^{b} f(x)dx \right).$$

Теорема. Если существует $\int_a^b f(x)dx$, то v. p. $\int_a^b f(x)dx = \int_a^b f(x)dx$.

4.1. Основные определения. Геометрическая терминология в R^n

$$x = (x_1, x_2, ..., x_n) \rho(x, y) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

 $\forall x,y : \rho(x,y) \ge 0, \ \rho(x,y) = 0 \Leftrightarrow x = y$

 $\forall x,y : \rho(x,y) = \rho(y,x)$

 $\forall x,y,z: \rho(x,y) \leq \rho(x,z) + \rho(z,y)$ (неравенство треугольника)

$$|\sum_{k=1}^n x_k y_k| \le \sqrt{\sum_{k=1}^n x_k^2} \sqrt{\sum_{k=1}^n y_k^2}$$
 Неравенство Коши-Буняковского

Величина $\sum_{k=1}^{n} x_k y_k$ - называется скалярным произведением и обозначается (x,y).

Величина $\sqrt{\sum_{k=1}^{n} x_k^2}$ называется нормой и обозначается ||x||.

Теорема. Для нормы справедливо неравенство $||x+y|| \le ||x|| + ||y||$.

- 1) $(x,x) \ge 0$, $(x,x) = 0 \Leftrightarrow x = 0 \ (x = (0,0,...,0))$
- 2) (x,y)=(y,x)
- 3) $(\lambda x, y) = \lambda(x, y)$
- 4) (x+y,z)=(x,z)+(y,z).

Определение. Пространство R^n со скалярным произведением (x,y) будем называть **евклидовым** пространством.

(n-мерный) **открытый шар** радиуса ε с центром в точке x_0 или ε окрестность точки $x_0: S_{\varepsilon}(x_0) = \{x \in \mathbb{R}^n : \rho(x, x_0) < \varepsilon \}.$

(n-мерный) замкнутый шар радиуса ε с центром ε точке $x_0: S_{\varepsilon}[x_0] = \{x \in R^n: \rho(x,x_0) \le \varepsilon \}.$

В пространстве $R^n(n>1)$ под **окрестностью** ∞ понимается любое множество вида $\{x \in R^n : \rho(x,x^0) > r\}$, для произвольного числа r, и произвольной точки x^0 .

(n-мерный) параллелепипед : $B=[a_1,b_1]\times [a_2,b_2]\times ...\times [a_n,b_n].$

Проколотая окрестность точки: $\{x \in \mathbb{R}^n : 0 < \rho(x, x_0) < \varepsilon\}$.

Внутренняя точка множества — точка, которая принадлежит множеству вместе с некоторой своей окрестностью.

Открытое множество — множество, все точки которого внутренние. Предельная точка множества — точка, в любой окрестности которой содержится хотя бы одна точка множества, отличная от нее самой (или, что тоже, в любой окрестности этой точки содержится бесконечно много точек из данного множества).

Замкнутое множество — множество, содержащее все свои предельные точки. **Замыкание** множества A — само множество A плюс все его предельные точки. Обозначается чертой сверху: \bar{A} .

Предложение. Множество \overline{A} - замкнуто.

Ограниченное множество – множество, содержащееся в некотором шаре. **Компакт** – замкнутое, ограниченное множество.

Диаметр множества M – величина, определяемая равенством d(M) = $\sup_{x,y\in M} \rho(x,y)$.

4.2. Сходящиеся последовательности

Последовательность $\{x^k\} = \{(x_1^k, x_2^k, \dots, x_n^k)\}$ называется **сходящейся**, если существует точка x такая, что $\lim_{k\to\infty} \rho(x^k, x) = 0$. При этом пишут $x^k \to x$. (уметь формулировать на языке ε - N)

Фундаментальная последовательность. Последовательность $\{x^k\}$ называется фундаментальной, если она удовлетворяет условию Коши: $\forall \varepsilon > 0 \exists M \ \forall m > M \ \forall p : \rho(x^{m+p}, x^m) < \varepsilon$ (3)

Теорема 1. Последовательность $\{x^k\}$ фундаментальна тогда и только тогда, когда фундаментальны последовательностей ее координат $\{x_j^k\}_{k=1}^{\infty}$, j=1,2,...,n.

Теорема 2. Последовательность $\{x^k\}$ сходится к x тогда и только тогда, когда последовательности ее координат , j=1,2,...,n сходятся $\to x_j$, j=1,2,...,n.

Следствие (Критерий Коши сходимости последовательности). Для сходимости последовательности необходимо и достаточно, чтобы она была фундаментальна.

Теорема 3. Сходящаяся последовательность ограничена.

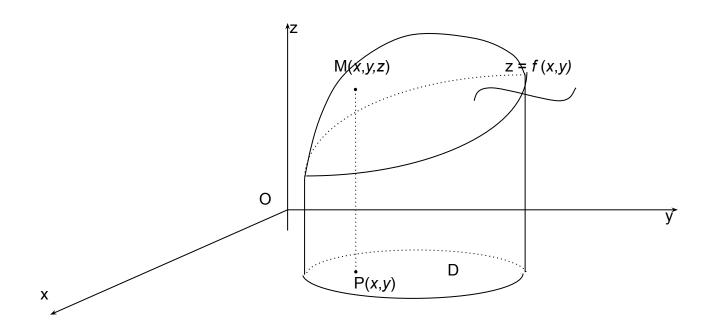
4.3. Теоремы о вложенных множествах и Больцано-Вейерштрасса

Теорема 4. (О стягивающихся к нулю вложенных множествах). Для последовательности вложенных компактных не пустых множеств $K_1 \supset K_2 \supset ... \supset K_n \supset ...$, диаметр которых $\to 0$, существует единственная общая точка $\alpha \in \bigcup_{n=1}^{\infty} K_n$.

Теорема Больцано-Вейерштрасса. Из любой ограниченной последовательности можно выбрать сходящуюся подпоследовательность.

4.4. Функции многих переменных

Определение. Пусть D – некоторое множество точек пространства R^n . Eсли для $\forall x \in D$ сопоставлено единственное число $u \in R$, то говорят, что задана функция, определенная на множестве D. При этом пишут $u = f(x) = f(x_1, x_2, ..., x_n)$, D называется областью определения функции f.



Определение. Пусть f определена на $D \subset R^n$, и x^0 – предельная точка множества D. Число A называется пределом функции f при $x \to x^0$, если $\forall \varepsilon > 0 \exists \delta > 0 \ \forall x \in D \cap S_\delta(x^0) : |f(x) - A| < \varepsilon$. (Здесь $S_\delta(x^0) = S_\delta(x^0) - \{x^0\}$) Пишут $A = \lim_{x \to x^0} f(x) = \lim_{x_1 \to x^0_1} f(x_1, x_2, \dots, x_n)$.

Определение предела по Гейне. Для любой последовательности типа Гейне $x^k \Rightarrow \lim_{k \to \infty} f(x^k) = A$.

В этих определениях a может быть точкой или символом ∞ , A — может быть числом или символами ∞ , $+\infty$, $-\infty$. Последовательность типа Гейне определяется, как последовательность, удовлетворяющая условиям: 1) $\lim_{k\to\infty} x^k = x^0$, 2) $x^k \neq x^0$, 3) $x^k \in D$.

Критерий Коши существования конечного предела. Для существования конечного предела необходимо и достаточно, чтобы $\forall \varepsilon > 0 \exists \delta > 0 \ \forall x', x'' \in D \cap S_{\delta}(x^0) : |f(x'') - f(x')| < \varepsilon$.

Свойства пределов

- 1) Если предел существует, то он единственен.
- 2) Если существуют конечные пределы $\lim_{x \to x^0} f(x) = A$, $\lim_{x \to x^0} g(x) = B$, то будет существовать $\lim_{x \to x^0} (f(x) \pm g(x)) = A \pm B$.
- 3) Если существуют конечные пределы $\lim_{x \to x^0} f(x) = A$, $\lim_{x \to x^0} g(x) = B$, то будет существовать $\lim_{x \to x^0} (f(x)g(x)) = AB$.
- 4) Если существуют конечные пределы $\lim_{x\to x^0} f(x) = A$, $\lim_{x\to x^0} g(x) = B$, и $B \neq 0$, то будет существовать $\lim_{x\to x^0} (f(x)/g(x)) = A/B$.

Определение. Пусть f(x) определена в некоторой проколотой окрестности точки x^0 и $a=(a_1,a_2,...,a_n)$ — заданный вектор. Пределом функции f(x) в точке x^0 в направлении вектора а называется предел $\lim_{t\to 0+0} f(x^0+ta) = \lim_{t\to 0+0} f(x_1^0+ta_1,x_2^0+ta_2,...,x_n^0+ta_n)$.

Предложение. Если существует $\lim_{x\to x^0} f(x^0) = A$, то существует и предел функции f(x) в точке x^0 по любому направлению и он равен A.

Примеры

- 1. Доказать, что функция $f(x,y) = (x + y) \sin(1/x) \sin(1/y)$ является бесконечно малой в точке 0.
- 2. Существует ли предел $\lim_{\substack{x\to 0\\y\to 0}} \frac{xy}{x^2+y^2}$ 3. Вычислить предел $\lim_{\substack{x\to \infty\\y\to \infty}} \frac{x+2y}{x^2-2xy+2y^2}$
- 4. Существует ли предел $\lim_{\substack{x\to 0\\y\to 0}} \frac{x^2y}{x^4+y^2}$ 5. Вычислить предел $\lim_{\substack{x\to 0\\y\to 0}} \frac{\sin xy}{\sqrt{x^2+y^2}}$
- 6. Вычислить предел $\lim_{\substack{x \to 1 \\ y \to 0}} \frac{\ln^2(x+y)}{\sqrt{x^2+y^2-2x+1}}$

Повторные пределы (случай п = 2).

Теорема. Если функция f(x) определена в проколотой окрестности точки $M^0 = (x^0, y^0)$ и существует конечный предел $\lim_{M \to M^0} f(M) = A$ и для $\forall y \in (y^0 - \gamma, y^0 + \gamma) \exists \varphi(y) = \lim_{x \to x^0} f(x, y)$. Тогда $\exists \lim_{y \to y^0} \lim_{x \to x^0} f(x, y) = A$.

Пример:

$$f(x,y) = \frac{x^2 + y^2 + x - y}{x + y}$$

4.5. Непрерывность функции многих переменных

Определение. Функция f(x) называется непрерывной в точке x^0 , если $\lim_{x \to x^0} f(x) = f(x^0)$.

Функция называется непрерывной на множестве, если она непрерывна в каждой точке множества.

Предложение. Сумма, произведение и частное двух непрерывных функций является так же непрерывной функцией (в последнем случае знаменатель должен быть отличен от нуля). Кроме того непрерывной является модуль непрерывной функции.

Дать определения:

- 1) Определение на языке «ε-δ»;
- 2) По последовательностям;
- 3) На языке приращений $\Delta f(x) = f(x + \Delta x) f(x), \Delta x = (\Delta x_1, \Delta x_2, ..., \Delta x_n)$ Функция f(x) называется непрерывной в точке x^0 по переменной x_k , если частное приращение $\Delta_k f(x^0) = f(x^0 + \Delta_k x) f(x^0), \Delta_k x = (0, 0, ..., \Delta x_k, 0, ..., 0)$ этой функции в точке x^0 представляет собой бесконечно малую функцию от $\Delta_k x$, т. е. если $\lim_{\Delta x_{k\to 0}} \Delta_k f(x^0)$.

Пример:
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, \text{при } x^2 + y^2 \neq 0, \\ 0, \text{при } x^2 + y^2 = 0. \end{cases}$$

Основные свойства непрерывных функций

Предложение 1. Сумма, произведение и частное двух непрерывных функций является так же непрерывной функцией (в последнем случае знаменатель должен быть отличен от нуля). Кроме того непрерывной является модуль непрерывной функции.

Предложение 2. Пусть $x_i = \phi_i(t_1, t_2, ..., t_m)$, i = 1, 2, ..., n непрерывны в точке $A(a_1 \ a_2, ..., a_m)$, а функция $u = f(x_1, x_2, ..., x_n)$ непрерывна в точке B $\{b_1, b_2, ..., b_n\}$, где $b_k = \phi_k(a_1, a_2, ..., a_m)$, i = 1, 2, ..., n. Тогда сложная функция $u = f(\phi_1(t_1, t_2, ..., t_m), \phi_2(t_1, t_2, ..., t_m), ..., \phi_n(t_1, t_2, ..., t_m))$, непрерывна в точке $A(a_1 \ a_2, ..., a_m)$.