ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ИРКУТСКОЙ ОБЛАСТИ «ЧЕРЕМХОВСКИЙ ГОРНОТЕХНИЧЕСКИЙ КОЛЛЕДЖ ИМ. М.И ЩАДОВА» (ЧГТК ИМ. М.И. ЩАДОВА)

Оптоэлектронные приборы

Скворцов А.М. Преподаватель спецдисциплин Заслуженный учитель Р.Ф.

Оптоэлектронные приборы

Оптоэлектронными приборами (оптронами)

называют такие полупроводниковые приборы, в которых имеются источник или приемник излучения (светоизлучатель или фотоприемник)
Принцип действия:

В излучателе энергия электрического сигнала преобразуется в световую, а в фотоприемнике, наоборот, световой сигнал вызывает электрический отклик (сигнал).

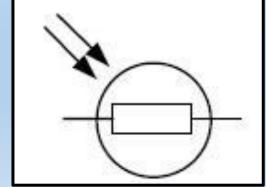
Существуют три типа устройств, которые взаимодействуют со светом:

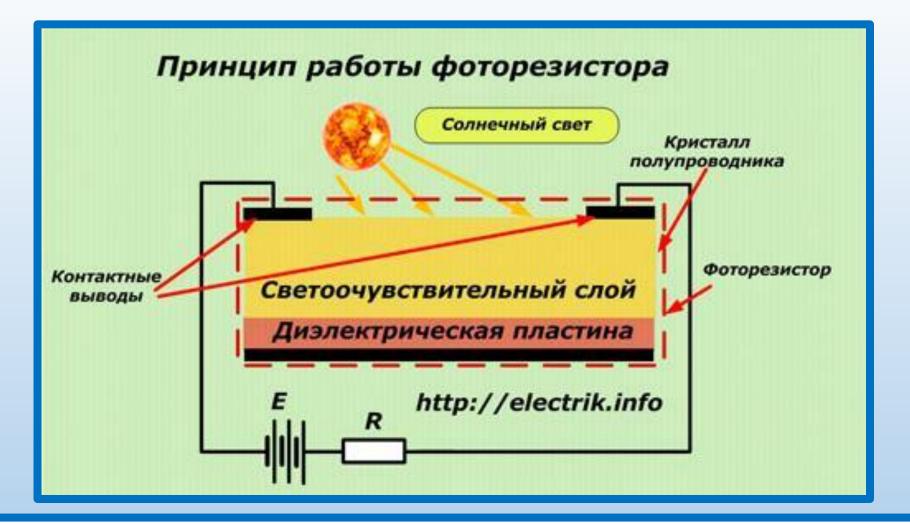
- устройства для регистрации света,
- устройства для преобразования света,
- светоизлучающие устройства.

Фоторезисторы

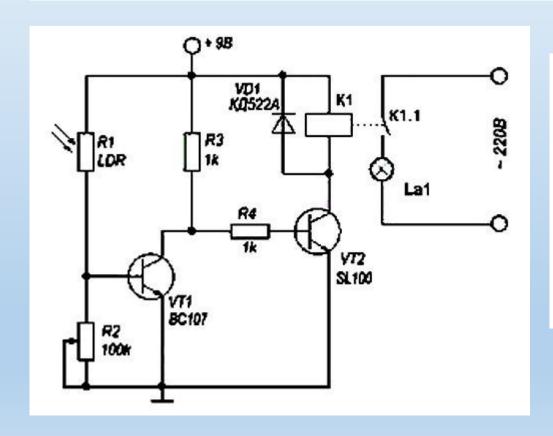
— это резисторы, у которых меняется сопротивление в зависимости от действия света на светочувствительную поверхность.

В полной темноте сопротивление фоторезистора имеет большую величину, достигающую иногда до 1 мегаома.


При воздействии на датчик (чувствительную часть фоторезистора) светового потока, его сопротивление в значительной степени снижается, и зависит от интенсивности освещенности.


Величина сопротивления при этом может упасть до нескольких Ом.

На электрических схемах фоторезисторы обозначаются:


При попадании на чувствительный слой фотоны воздействуют на электроны и заставляют их двигаться в зону проводимости**■**

В итоге в материале возникает значительное число электронов, вследствие чего повышается электропроводность, а значит и снижается сопротивление.

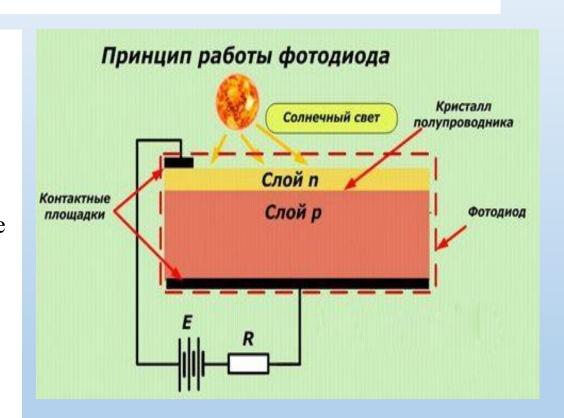
Сфера использования фоторезисторов

Применяется в виде датчиков света, если необходимо определять отсутствие или наличие света.

Таким примером служит автоматическая система включения освещения улиц.

Световое реле для освещения улиц

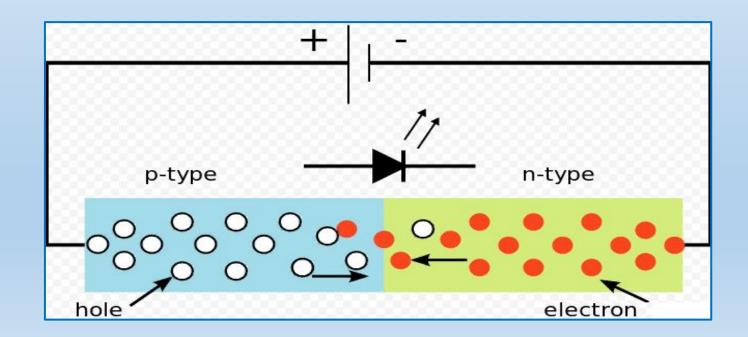
Эта система включает освещение улиц в автоматическом режиме, при наступлении темного времени суток, и отключает его при наступлении светлого времени. Такую схему можно применять для любых автоматических систем освещения.


Фотодиоды

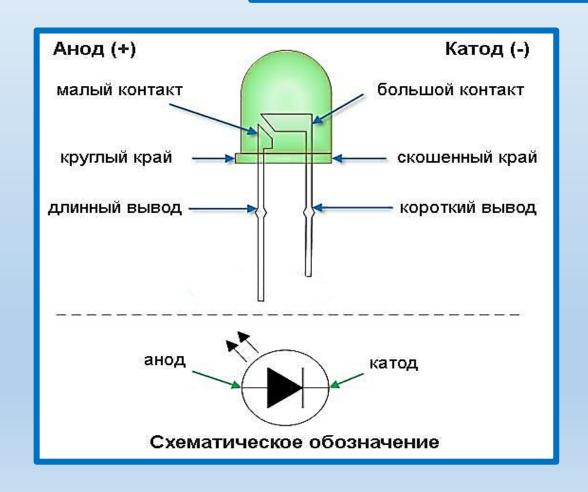
- это полупроводниковые фотоэлектрические приборы с одним **p-n-**переходом и двумя контактами, принцип действия которых основан на использовании внутреннего фотоэффекта.

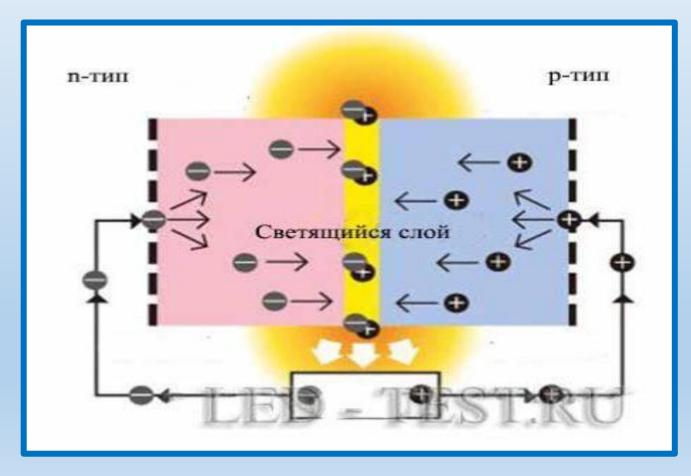
Фотоэффект

заключается в возникновении в полупроводнике под воздействием светового потока дополнительных электронов и дырок (фотоносителей).


- Фотоносители, находящиеся в области **n**, подходят к границе, на которой они разделяются под влиянием электрического поля
- Дырки перемещаются в зону **р**, а электроны собираются в зоне **п** или около границы
- Дырки заряжают **р**-область положительно, а электроны **n**-зону отрицательно. Образуется разность потенциалов
- Чем выше освещенность, тем больше обратный ток

Светодиод


или **светоизлучающий диод** (СД, СИД;) — <u>полупроводниковый прибор</u> с <u>электронно-дырочным</u> <u>переходом</u>, создающий <u>оптическое излучение</u> при пропускании через него электрического тока в прямом направлении.


При пропускании электрического тока через **р-п-**переход в прямом направлении носители заряда — <u>электроны</u> и <u>дырки</u> — рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).

Излучаемый светодиодом свет

- лежит в узком диапазоне спектра. Иными словами, его кристалл изначально излучает конкретный цвет (если речь идёт о СД видимого диапазона)

