
Полякова Татьяна Алексеевна Ангарский автотранспортный техникум.

Механические свойства металлов и сплавов

І.Прочность

Способность
 металла(сплава)
 сопротивляться
 разрушению под
 действием внешних
 нагрузок

Деформации:

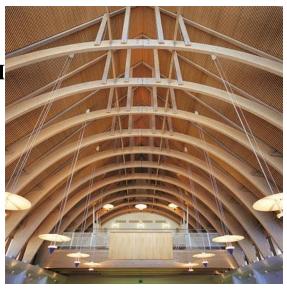
СТАТИЧЕСКИЕ Нарастающие медленно от 0 до некоторого максимального значения и далее остаются постоянными

ДИНАМИЧЕСКИЕ-Возникающие в результате удара, когда действие нагрузки исчисляется долями секунд

Пример нагрузок

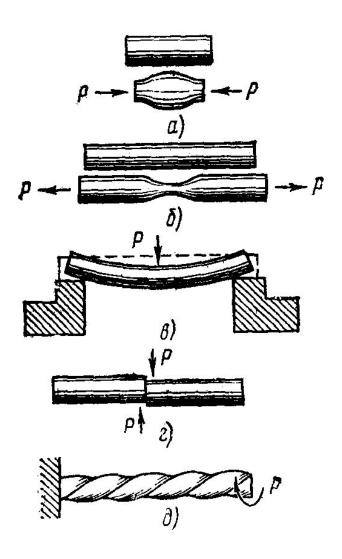
Динамические нагрузки

- 1. Создают люди в зданиях;
- 2. Грузовые автомобили на мосту;
- 3. Станки в цеху;
- 4. Гидротурбина в машинном зале


ГЭС;

Нагрузки, которые нельзя оценить

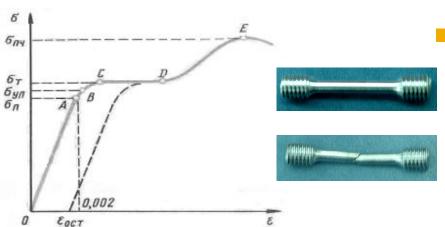
- 1. Удар ветра;
- 2. Температурные колебания;
- 3. Землетрясение;


Статические нагрузки

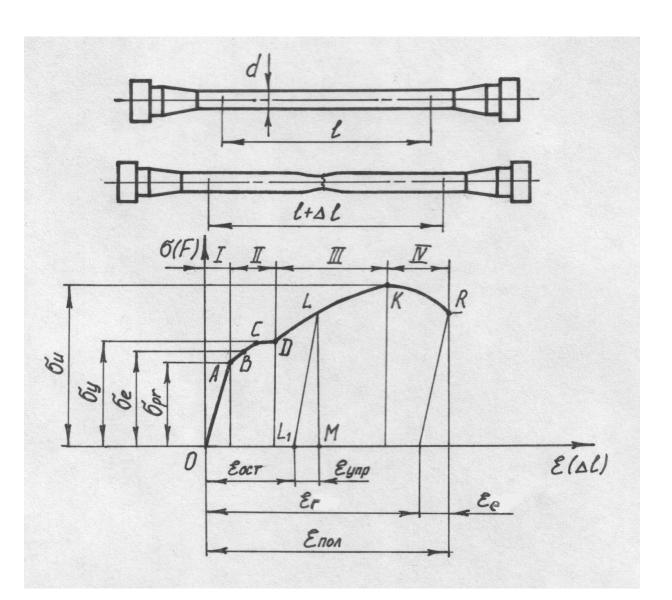
- 1. Здания на фундаменте;
- 2. Механическое оборудование, закрепленное на определенном месте;

Виды деформации:

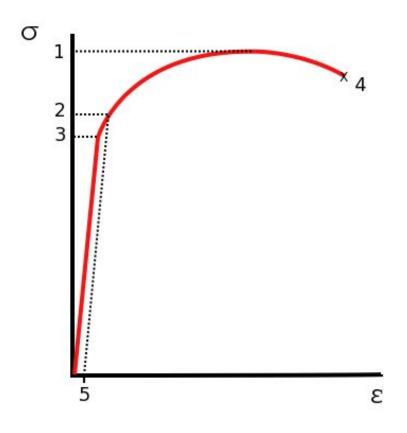

- Сжатие
- Растяжение
- Изгиб
- Cpe3
- Кручение

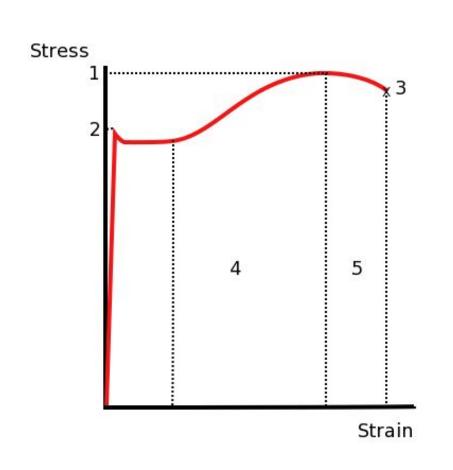

Разрывная машина- устройство для проведения испытания образца на прочность

 Образец выполняют по ГОСТамиспытывают на сжатие и растяжение


Диаграмма условных напряжений (Растяжение)

• Напряжение- σ (σ = P/A_0 , где A_0 — исходная площадь поперечного сечения) и линейной деформации ε (ε = $\Delta l/l_0$).


при этом не учитывается изменение площади поперечного сечения образца в процессе испытания.


Типичная диаграмма σ — ε для алюминиевых сплавов

- 1. Предел прочности
- 2. Условный предел текучести ($\sigma_{0.2}$)
- 3. Предел пропорциональности
- 4. Точка разрушения

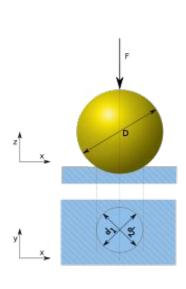
(Деформация при условном пределе текучести (обычно, 0,2 %)

Типичная диаграмма σ — ε для малоуглеродистой стали

- 1. Предел прочности (временное сопротивление разрушению)
- 2. Предел текучести (верхний)
- 3. Точка разрушения
- 4. Область деформационного упрочнения
- 5. Образование шейки на образце

Классификация материалов по остаточному удлинению:

- $\delta = (l_k l_0)/l_0$, где l_0 и l_k начальная и конечная длина рабочей части образца), обычно вычисляемое в процентах. :
- пластичные ($\delta \ge 10$ %);
- малопластичные (5 % < δ < 10 %);</p>
- хрупкие ($\delta \leq 5$ %).


II.Твердость

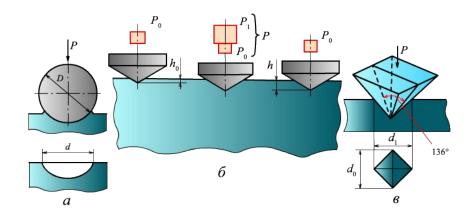
- Это свойства металла (сплава) оказывать сопротиление проникновению в него другого, более твердого тела, не получающего остаточной деформации.
- Метод определения твердости металла был предложен шведским инженером Юханом Августом Бринеллем (1849—1925)

Методика проведения испытания

- Этот метод относится к методам вдавливания. Испытание проводится следующим образом: вначале подводят образец к <u>индентору</u>, затем вдавливают <u>индентор</u> в образец с плавно нарастающей нагрузкой в течение 2-8 с, после достижения максимальной величины, нагрузка на <u>индентор</u> выдерживается в определенном интервале времени (обычно 10-15 с для сталей). Затем снимают приложенную нагрузку, отводят образец от <u>индентора</u> и измеряют диаметр получившегося отпечатка. В качестве <u>инденторов</u> используются шарики из твердого сплава диаметром 1; 2,5; 5 и 10 мм. Величину нагрузки и диаметр шарика выбирают в зависимости от исследуемого материала, который разделен на 5 основных групп:
- 1 сталь, никелевые и титановые сплавы;
- 2 чугун;
- 3 медь и сплавы меди;
- 4 легкие металлы и их сплавы;
- 5 свинец, олово.
- Кроме этого, вышеприведенные группы могут разделяться на подгруппы в зависимости от твердости образцов. При выборе условий испытаний следят за тем, чтобы толщина образца, как минимум, в 8 раз превышала глубину вдавливания индентора.

Твердомеры-проведение испытания на твердость

Метод Бринелля- вдавливается стальной шарик Метод Роквелла- вдавливается алмазный конус, стальной шарик Метод Виккерса- вдавливается алмазная пирамидка

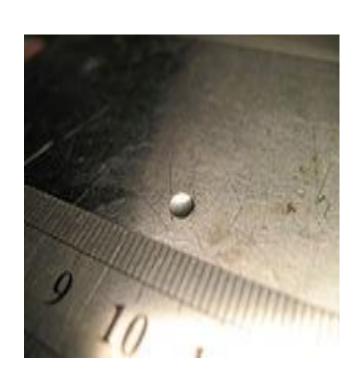

■ Твёрдость по Бринеллю НВ рассчитывается как отношение приложенной нагрузки к площади поверхности отпенатка (метод воф Вамовленного отпечатка):

воссвановленного отнечатка): , $\frac{\pi D}{2} \left(D - \sqrt{D^2 - d^2} \right)$

- где F приложенная нагрузка, Н;
- **D** диаметр шарика, мм;
- **d** диаметр отпечатка, мм,
- или как отношение приложенной нагрузки к площади внедренной в материал части индентора (метод невосстановленного);

$$HBW = \frac{0.1021}{\pi Dh}$$

 где h — глубина внедрения индентора, мм.



Пример обозначения твердости по Бринеллю:

600 HBW 10/3000/20,

- где 600 значение твердости по Бринеллю, кгс/мм²;
- **HBW** символьное обозначение твердости по Бринеллю;
- 10 диаметр шарика в мм;
- **3000** приблизительное значение эквивалентной нагрузки в кгс (3000 кгс = 29420 H);
- 20 время действия нагрузки, с.

Методика проведения испытаний и расчёт твёрдости

 Отпечаток индентора на эталонном образце.
 Твёрдость 96,5 HBW 10/1000/10

Типичные значения твёрдости для различных материалов

Материал	Твёрдость
Мягкое <u>дерево</u> , например <u>сосна</u>	1,6 HBS 10/100
Твёрдое дерево	от 2,6 до 7,0 HBS 10/100
<u>Алюминий</u>	15 HB
<u>Медь</u>	35 HB
<u>Дюраль</u>	70 HB
Мягкая сталь	120 HB
Нержавеющая сталь	250 HB
<u>Стекло</u>	500 HB

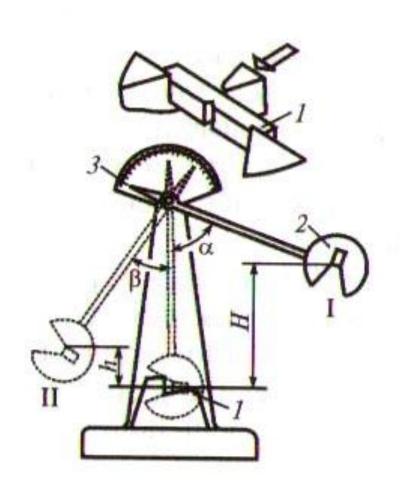
Недостатки методики Бринелля

- Метод можно применять только для материалов с твердостью до 650 HBW.
- Твёрдость по Бринеллю зависит от нагрузки (обратный размерный эффект reverse indentation size effect).
- При вдавливании индентора по краям отпечатка изза выдавливания материала образуются навалы и наплывы, что затрудняет измерение как диаметра, так и глубины отпечатка.
- Из-за большого размера тела внедрения (шарика) метод неприменим для тонких образцов.

Преимущества

- Зная твёрдость по Бринеллю, можно быстро найти предел прочности и текучести материала, что важно для прикладных инженерных задач:
- Так как метод Бринелля один из самых старых, накоплено много технической документации, где твёрдость материалов указана в соответствии с этим методом.
- Данный метод является более точным по сравнению с методом Роквелла на более низких значениях твёрдости (ниже 30 HRC).
- Также метод Бринелля менее критичен к чистоте подготовленной под замер твёрдости поверхности.

твердость по Бринеллю обозначают только числовым значением твердости и символом НВ или HBW: например, 185 HB, 600 HBW.


Примеры:

- **250** HB 5/750 /10
- 575 HBW 2,5/187, 5/30 -

III.Ударная вязкость

 Ударная вязкость характеризует надежность материала, его способность сопротивляться хрупкому разрушению. Испытание проводят на образцах с надрезами определенной формы и размеров. Образец устанавливают на опорах копра надрезом в сторону, противоположную удару ножа маятника, который поднимают на определенную высоту.

Схема ударного испытания образцов на маятниковом копре

При падении маятник ударяет по образцу, разрушает его и поднимается в положение II на высоту h. Для остановки маятника имеется тормоз.

Расчет вязкости материала

- Выразив высоту маятника в положении до и после удара через пишу маятника 1 и углы α и β, получим выражение для определения работы, затраченной на деформацию и разрушение образца:
- \mathbf{K} = Gl (cos β cos α),
- где α угол начального подъема маятника; β угол подъема маятника после разрушения образца, фиксируемый на шкале 3 (см. Рис. 1).
- Масса груза и длина маятника известны. Угол α является величиной постоянной. Зная угол β по результатам испытаний, определяют работу К и ударную вязкость КС.

- Образцы с V-образным надрезом являются основными и их и используют при контроле металлопродукции для ответственных конструкций (транспортных средств, летательных аппаратом др.), а образцы с U-образным надрезом применяют при приемочном контроле металлопродукции; образцы с Т-образным надрезом предназначены для испытания материалов, работающих в особо ответственных конструкциях.
- При испытании металлов на удар определяют ударную вязкость, которую обозначают КС. Ударная вязкость КС это отношение работы К разрушения стандартного образца к площади его поперечного сечения F в месте надреза:
- $\mathbf{KC} = \mathbf{K}/\mathbf{F}, \, \mathbf{Д}\mathbf{ж}/\mathbf{M}^2$

Обозначение вязкости

 В зависимости от вида концентратора в образце (U, V, T) в обозначении ударной вязкости вводят третий индекс, согласно виду концентратора: КСU, КСV, КСТ.

Вывод:

Название испытания	обозначение	нагрузки
Твердость по Бринеллю	HB или HBW	До 650н
Твердость по Роквеллу	HRA (шкалаА) HRB (шкала В) HRC (шкала с)	588н 980н 1470н
Прочность	–предел прочности	
Пластичность Вязкость	E-удлинение E=l-l\l KCU, KCV, KCT	

ПРИМЕР- заполни пробелы

- <u>Медь</u> мягкий пластичный металл розовато-красного цвета, обладающий высокой электропроводностью, теплопроводностью, коррозийной стойкостью.
 В отожженном состоянии она характеризуется пределом прочности при растяжении Σ = 19,6 23,6 МПа.
 Твердостью по Бринеллю 35 -45 НВ. кировка по прочности
- <u>Алюминий</u> мягкий пластичный металл серебристобелого цвета, отличается высокой электропроводностью, коррозийной стойкостью, малой плотностью и хорошо обрабатывается давлением. В отожженном состоянии алюминий обладает малой Σ_в=78,5 118 МПа и 15-25 НВ.