
МДК. 02.02 Управление проектами Лекция 4. Расчет расписания проекта

Вопросы:

- 1. Оценка длительности операций.
- 2. Метод критического пути.
- 3. Meтод PERT.

Оценка длительности операций

Оценка длительности операций - это процесс использования информации о содержании и ресурсах проекта для определения продолжительности работ и последующего использования этого параметра при составлении расписания проекта.

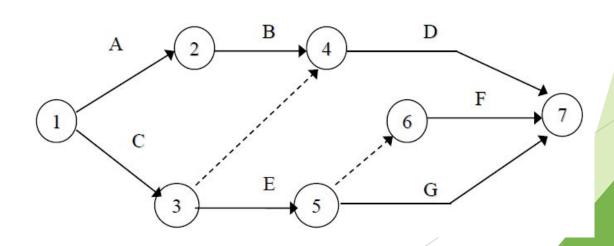
Структура процесса «Оценка продолжительности работ»

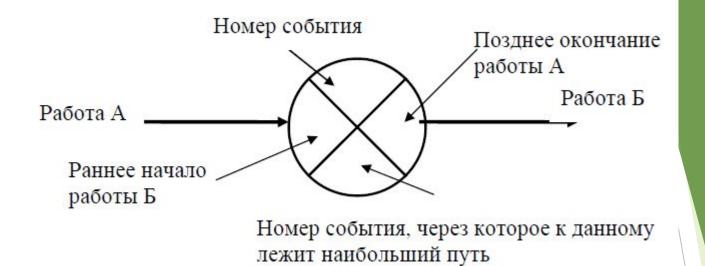
Структура процесса «Разработка расписания проекта»

Виды математического анализа

Метод критического пути (Critical Path Method, CPM). Вычисляется единственное детерминированное расписание исполнения. При этом определяются ранние и поздние даты начала и завершения операций проекта, а значит, и резервы промежутки времени, на которые можно сдвинуть выполнение операций без нарушения ограничений и даты завершения проекта.

PERT (Program Evaluation and Review Technique). Используется последовательная сетевая логика и средневзвешенные оценки длительностей операций для вычисления продолжительности проекта. Основное отличие метода PERT от CPM заключается в том, что PERT использует ожидаемые значения вместо детерминированных оценок длительностей работ.

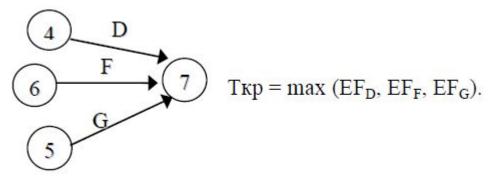

GERT (Graphical Evaluation and Review Technique). Позволяет использовать вероятностные оценки как длительностей, так и логики сети (одни операции могут вовсе не выполняться, другие - лишь частично, а третьи - по несколько раз).


Метод критического пути

Критический путь - это самая длительная цепочка операций.

Характеристика работ сетевого графика

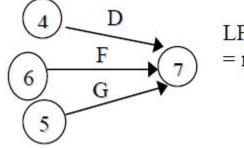
Предшествующая работа	Рассматриваемая работа	Длительность рассматриваемой работы
(H - I)	(I - J)	$T_{(I-J)}$
(-)	A	3
A	В	2
0770	C	6
B,C	D	4
C	E	2
E	F	1
Е	G	3

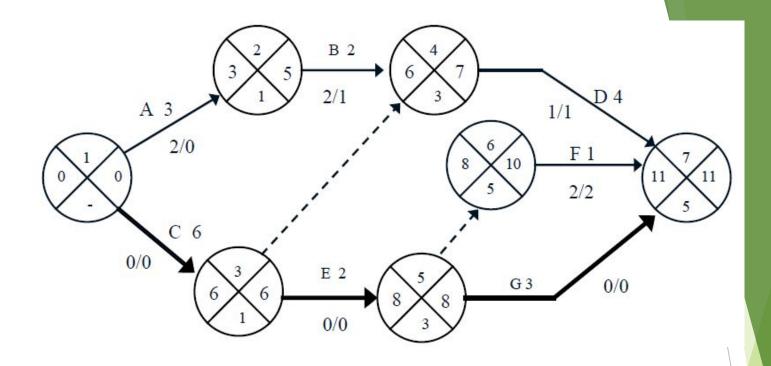


Раннее начало ES (Early Start) - самое раннее из возможных сроков **начала** работы, равное продолжительности самого длинного пути от исходного события до начального события данной работы.

Раннее окончание $EF_{(I-J)} = ES_{(I-J)} + T_{(I-J)} + T_{(I-J)}$ - самое раннее из возможных сроков ее окончания, распост (I-J) - самое раннее из возможных сроков ее окончания.

Если у рассматриваемой работы несколько предшествующих, то ее раннее начало равно максимальному до рашила опольными предшествующих работ:


Если в конечное событие входит несколько работ, то критический путь равен максимальному из сроков ранних окончаний всех завершающих работ:


Расчет поздних сроков выполняется обратным ходом от завершающего события к исходному.

Позднее окончание работы LF (Last Finish) - самое позднее из допустимых сроков ее окончания, при котором не увеличивается общая длительность проекта. LF равно минимальному из сроков поздних начал последующих работ.

В завершающем событии сетевого графика позднее окончание всех работ равно максимальному из сроков раннего окончания этих работ и равно продолжительности критического пути.

$$LF_D = LF_F = LF_G =$$

= max (EF_D, EF_F, EF_G) = T κp .

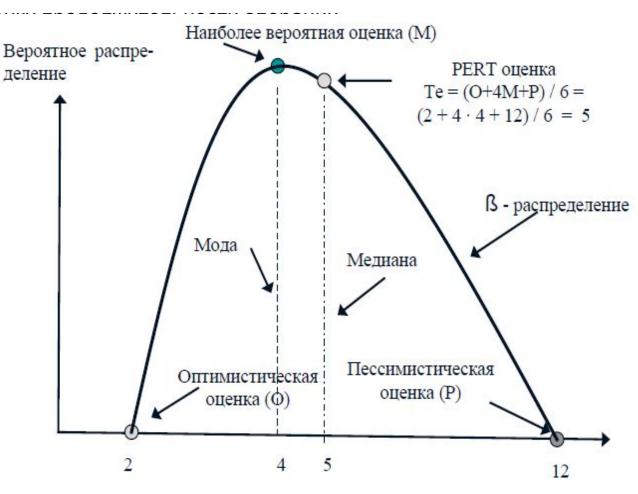
Позднее начало LS (Last Start) - самый поздний из допустимых сроков начала работы, при котором не увеличивается общая длительность проекта. LS равно разности между поздним окончанием и продолжительностью работы: LS = LF - T.

Общий (полный) резерв времени TF (Total Float) - промежуток времени, на который можно задержать начало работы или увеличить ее длительность без изменения срока завершения проекта: TF = LF - EF = LF - (ES + T) = LS - ES.

Частный (свободный) резерв времени FF (Free Float) - промежуток времени, на который можно задержать начало работы или увеличить ее длительность без изменения раннего начала последующих работ. Частный резерв находят как разность между ранним началом последующей $FF_{I-J} = ES_{J-K} - EF_{I-J}$ нием рассматриваемой:

Метод PERT

Вероятностная оценка длительности операции методом PERT предполагает получение трех оценок длительности: оптимистической (О), наиболее вероятной (М) и пессимистической (Р).


Мера разброса оценок О, М и Р называется дисперсией (σ2), характеризующей неопределенность,

связанную с процессом ош

Может оказаться, что ожидаєт я длительность выполнения Проекта Те неприемлема; вместо та выбирается другат тубия, а именто Тs, , меньше, чем

$$\sigma = \sqrt{\sigma^2}$$

$$\sigma^2 = \left(\frac{P - O}{6}\right)^2.$$

Пример.

Оценка длительности операций проекта

Опе- рация	Предшест- вующая операция	Оптимисти- ческая оценка О	Наиболее вероятная оценка М	Пессимисти- ческая оценка Р
A	-	10	22	22
В	923	20	20	20
C	5-0	4	10	16
D	A	2	14	32
E	B,C	8	8	20
Е	B,C	8	8	20
G	C	2	12	22
H	D,E	2	8	14
I	G	6	15	30

Оценка параметров проекта

Операция	Ожидаемое время Т _е	Дисперсия σ^2	Среднеквадратическое отклонение о
A	20	4	2
В	20	0	0
C	10	4	2
D	15	25	5
Е	10	4	2
F	14	4	2
G	12	11,11	3,33
H	8	4	2
I	16	16	4

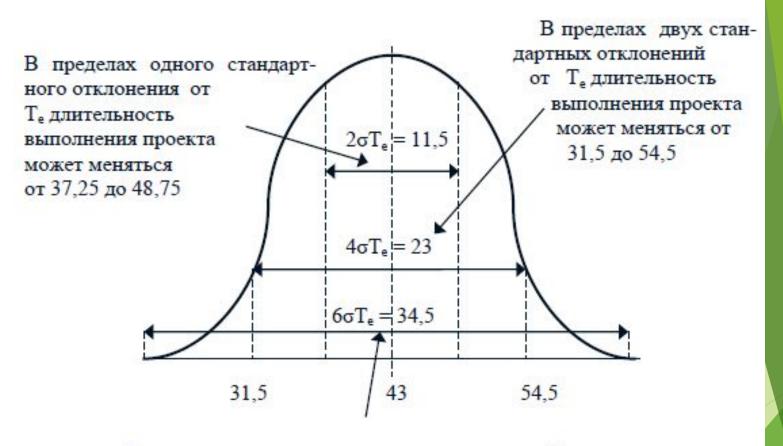
Опе- рация	Предшест- вующая операция	
A	=	
В	-	
C	F <u>200</u>	
D	A	
Е	B,C	
Е	B,C	
G	C	
Н	D,E	
I	G	

	Операция	Ожидаемое время
		T _e
	A	20
	В	20
	C	10
	D	15
	Е	10
	F	14
D 15	G	12
D 15	H	8
	I	16
$A \rightarrow C \qquad \qquad C \qquad$	8	

F 14

16

Продолжительность критического пути


B 20

C 10

$$T_e = T_A + T_D + T_H = 20 + 15 + 8 = 43$$
 дня.

G 12

Дисперсия критического пути равна $\Sigma \sigma^2 = 4 + 25 + 4 = 33$. Среднеквадратическое отклонение $\sigma = \sqrt{\Sigma \sigma^2} = 5,75$.

В пределах трех стандартных отклонений от T_e длительность выполнения проекта может меняться от 25,75 до 60,25

Планируемая длительность (T_s) — Ожидаемая длительность (T_e)

Среднеквадратическое отклонение (σ)

Допустим, необходимо узнать вероятность завершения проекта за 50 дней. Критический путь проекта состоит из работ A, D и H и равен 43 дням, дисперсия этих работ 4+25+4=33, а среднеквадратическое отклонение $\sigma = \sqrt{33} = 5.75$. Тогда Z = (50-43)/5.75 = 1.22. Вероятность, соответствующая значению Z = 1.22, составляет 0,8888. Значит, вероятность завершения критического пути за 50 дней с момента начала проекта равна 88,88 %.

Можно решить обратную задачу — какой предельный конечный срок соответствует заданному уровню вероятности завершения проекта. Допустим, что необходимо определить, какой предельный конечный срок соответствует 95%-ному уровню вероятности завершения проекта.

- 1. Находим значение Z, соответствующее вероятности 0,95. Z=1,645.
- 2. Решив уравнение относительно T_s, определяем:

$$T_s = 43 + 1,645 \cdot 5,75 = 52,45$$
 дня.

Итак, 95% - ному уровню вероятности завершения проекта соответствует срок в 52,45 дня.