ЭЛЕКТРИЧЕСКИЕ МАШИНЫ

КЛАССИФИКАЦИЯ ЭЛЕКТРИЧЕСКИХ МАШИН

По	По принципу		По роду	
назначению	действия		тока	
Генераторы	Коллекторные	Постоянного	Постоянного	
		тока		
Двигатели		Универсальные		
Преобразовате	Бесколлектрорные	Асинхронные	Переменного	Однофазные
ли				Многофазны
Датчики		Синхронные		e

По назначению

Генераторы

Преобразование механической энергии в электрическую

Двигатели

Преобразование электрической энергии в механическую

Преобразователи

Преобразование величины напряжения, тока, частоты

Датчики

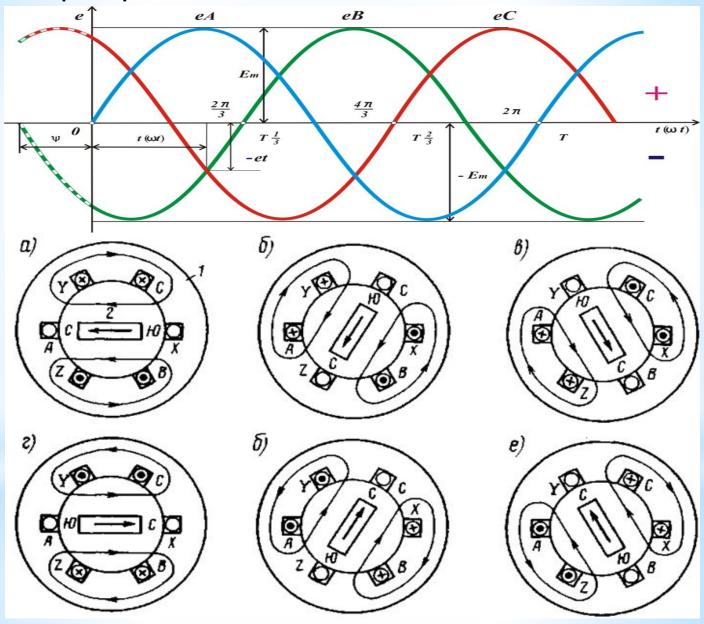
Преобразование неэлектрического сигнала в электрический

Датчики

Тахоганераторы - контроль частоты вращения Индуктосины - контроль линейных перемещений Резольверы (вращающиеся трансформаторы) преобразование угла поворота в электрический сигнал

Электрическая машина -

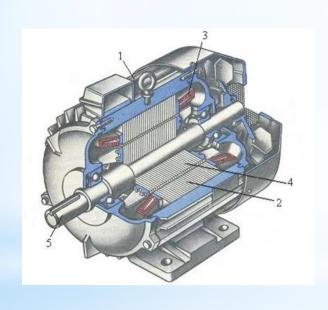
Электротехническое устройство, предназначенное для преобразования механической энергии в электрическую и электрической энергии в механическую, а также одной формы электрической энергии в другую, отличающуюся по напряжению, току или частоте.

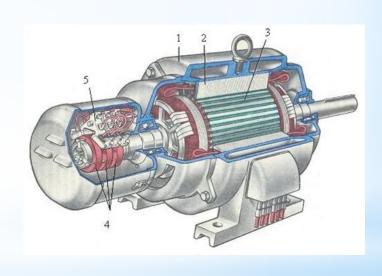

ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ТРЕХФАЗНОГО ПЕРЕМЕННОГО ТОКА

Это машины, работа которых основана на образовании в пространстве вращающегося магнитного поля

Синхронные машины - машины переменного тока у которых скорость ротора равна скорости вращающегося магнитного поля статора и зависит от частоты питающего тока

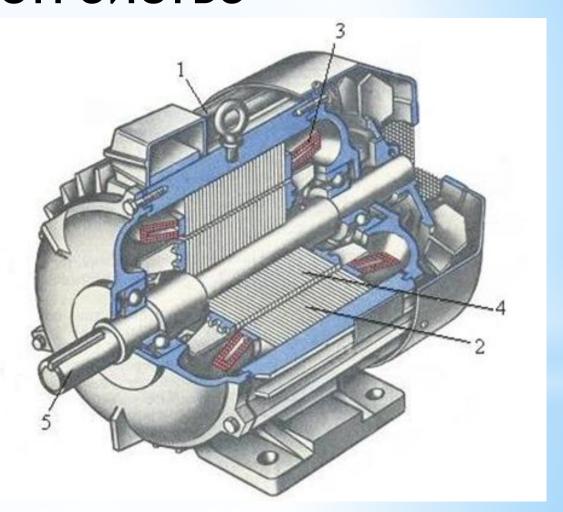
Асинхронные машины - машины переменного тока у которых скорость вращения ротора меньше скорости вращающегося магнитного поля статора и зависит от нагрузки

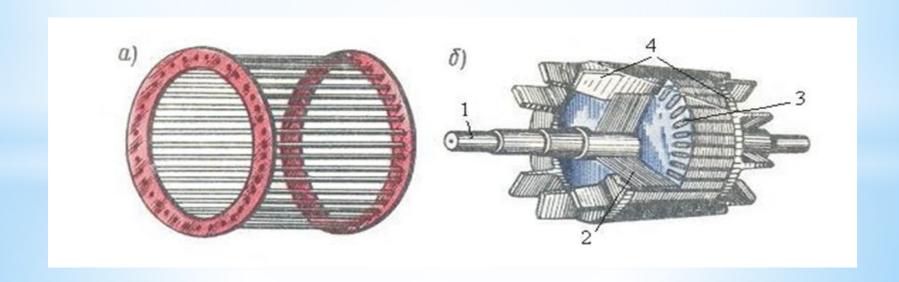

ВРАЩАЮЩЕЕСЯ МАГНИТНОЕ ПОЛЕ ТРЕХФАЗНОГО ТОКА



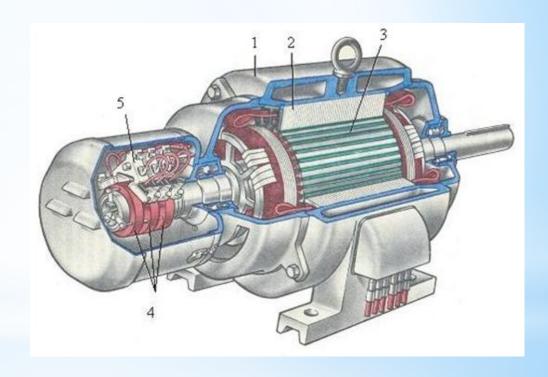
АСИНХРОННЫЕ МАШИНЫ

С КОРОТКОЗАМКНУТЫМ РОТОРОМ

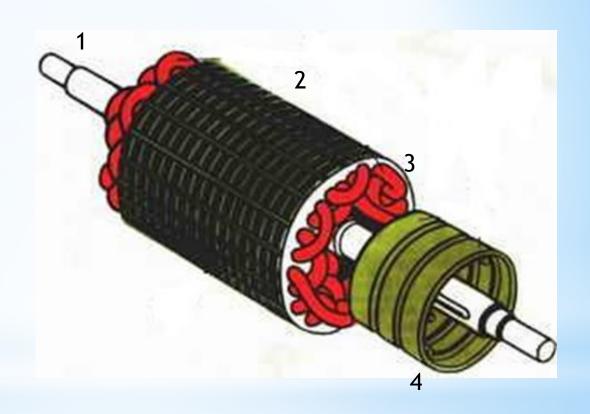

С ФАЗНЫМ РОТОРОМ


Асинхронные машины с короткозамкнутым ротором УСТРОЙСТВО

- 1 корпус (станина)
- 2 статор
- 3 обмотка статора
- 4 ротор
- 5 вал ротора


Устройство короткозамкнутого ротора

- 1 вал
- 2 сердечник
- 3 пазы
- 4 вентилятор


Устройство асинхронной машины с фазным ротором

- 1 корпус (станина)
- 2 статор
- 3 ротор
- 4 контактные кольца
- 5 щетки

Устройство фазного ротора

- 1 вал
- 2 сердечник
- 3 обмотка
- 4 кольца

Ответьте на вопросы

- 1 Условия образования вращающегося магнитного поля?
- 2 Сколько пар полюсов образует одна трехфазная обмотка и как сдвинуты (смещены) ее фазы?
- 3 На какой угол должны быть сдвинуты обмотки для получения двух пар полюсов?
- 4 Как изменяется магнитная индукция вращающегося магнитного поля с течением времени?
- 5 Запишите формулы магнитных индукций полей, создаваемых каждой обмоткой и зарисуйте векторные диаграммы?
- 6 Чему равна магнитная индукция в фазе А при $t=rac{T}{2}$?
- 7 Запишите принцип действия асинхронного двигателя?

Видеоролик

Тест

устройство генератора автомобильного