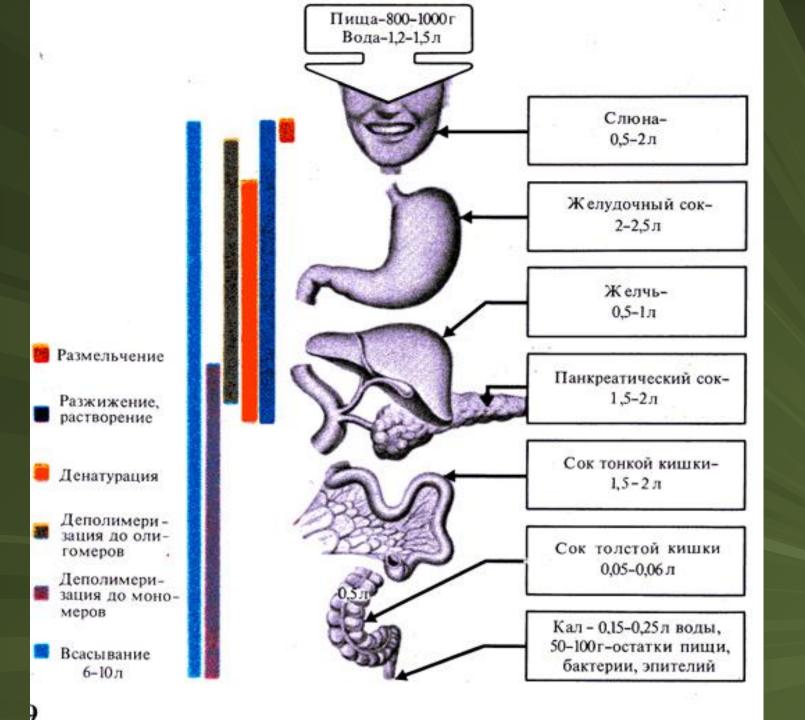

Лекция № 1

Тема: Функции органов пищеварения. Пищеварения в полости рта и желудка

- Типы пищеварения. Пищеварение в полости рта.
- Секреторная деятельность слюнных желёз. Состав и значение слюны.
- Жевание. Глотание, их фазы.
- Пищеварение в полости желудка


физических, химических и физиологических процессов, обеспечивающих обработку пищи, превращение пищевых веществ в простые химические соединения, которые могут быть использованы клетками организма.

В процессе пищеварения компоненты пищи утрачивают видовую специфичность, но сохраняют пластическую и энергетическую ценность.

Физические изменения пищи заключаются в ее механической обработке (размельчение, перемешивание, набухание, растворение).

Химические изменения состоят в расщеплении питательных веществ (белков, жиров, углеводов) под действием пищеварительных ферментов.

Органы пищеварительной системы (ПС) выполняют пищеварительные и непищеварительные функции.

- І. Пищеварительные функции:
- a) Секреторная функция выделение пищеварительных секретов (слюны, желудочного и кишечного соков, желчи, поджелудочного сока).
- б) Двигательная (моторная) сокращение поперечно-полосатых и гладких мышц способствуют измельчению пищи, смешиванию с пищеварительными секретами и передвижению по пищеварительному тракту.
- в) Всасывательная всасывание продуктов гидролиза, воды, витаминов, минеральных солей.

П. Непищеварительные функции:

- Защитная осуществляется с помощью специфических и неспецифических механизмов защиты.
- Выделительная (экскреторная) выделение пищеварительными железами в полость желудочно-кишечного тракта (ЖКТ) продуктов обмена (мочевина, аммиак, желчные пигменты), солей тяжелых металлов, лекарственных веществ и др.
- Эндокринная (инкреторная) заключается в выработке гастро-интестинальных гормонов, оказывающих регулирующее действие на функции ЖКТ.
- Метаболическая заключается в кругообороте эндогенных веществ между кровью и пищеварительным трактом.

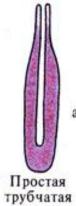
Классификация ферментов (гидролаз)

Железы пищеварительного тракта (ПТ) вырабатывают 3 группы гидролитических ферментов:

- 1. Протеазы расщепляют белки до аминокислот;
- 2. Липазы жиры и липиды до моноглицеридов и жирных кислот;
- 3. Карбогидразы углеводы (полисахариды) до моносахаридов.

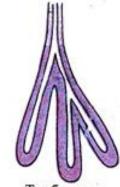
Типы пищеварения

- I. В зависимости от происхождения гидролитических ферментов различают пищеварение:
- аутолитическое осуществляется под влиянием ферментов, содержащихся в составе принимаемой пищи (материнское молоко);
- симбионтное происходит под влиянием ферментов, которые синтезируют симбионты (микрофлора толстого кишечника);
- собственное пищеварение осуществляется ферментами, синтезированными собственными железами ПТ.


- II. В зависимости от локализации пищеварение бывает:
- внутриклеточное представляет собой процесс гидролиза веществ внутри клетки лизосомальными ферментами (фагоцитоз, пиноцитоз);
- внеклеточное пищеварение делят на полостное (дистантное) и пристеночное (контактное).

Одноклеточные железы

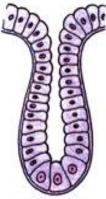
Железистые почки

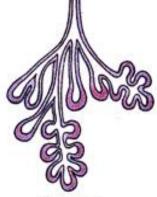


железа

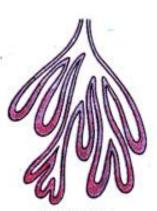
Простая альвеолярная железа

Альвеолярная разветвленная железа

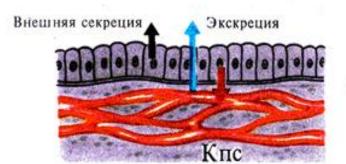

Трубчатая разветвлённая железа


Железистая ямка

Железистая

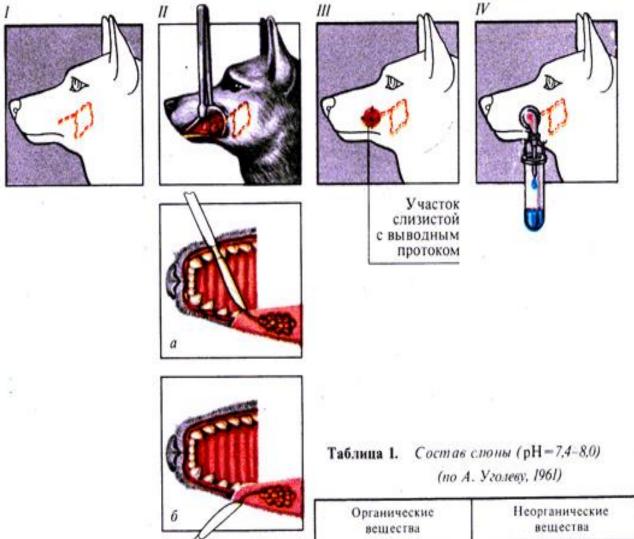

крипта

Трубчатая железа



Сложная альвеолярная железа

Сложная трубчатая железа



Внутренняя секреция

Пищеварение в ротовой полости.

В полости рта происходят: анализ свойств пищи, ее механическая и химическая обработка (жевание, слюноотделение), формирование пищевого комка.

6	Органические вещества	Неорганические вещества
	милаза (птиалин) Иальтаза Белки Иочевина Муцин	Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , Cl ⁻ , CO ₃ ²⁻ , SO ₄ ²⁻

Роль процесса жевания:

- 1.Жевание облегчает последующие процессы переваривания и всасывания;
- 2. Стимулирует слюноотделение, секреторную и моторную деятельность ЖКТ;
- 3. В процессе жевания образуется слизистый пищевой комок, облегчающий его проглатывание.

К жевательной системе относят:

в/ и н/челюсти с зубными рядами, жевательную и мимическую мускулатуру, сл. об. полости рта, язык, щеки, небо, слюнные железы и нервный аппарат регуляции жевания.

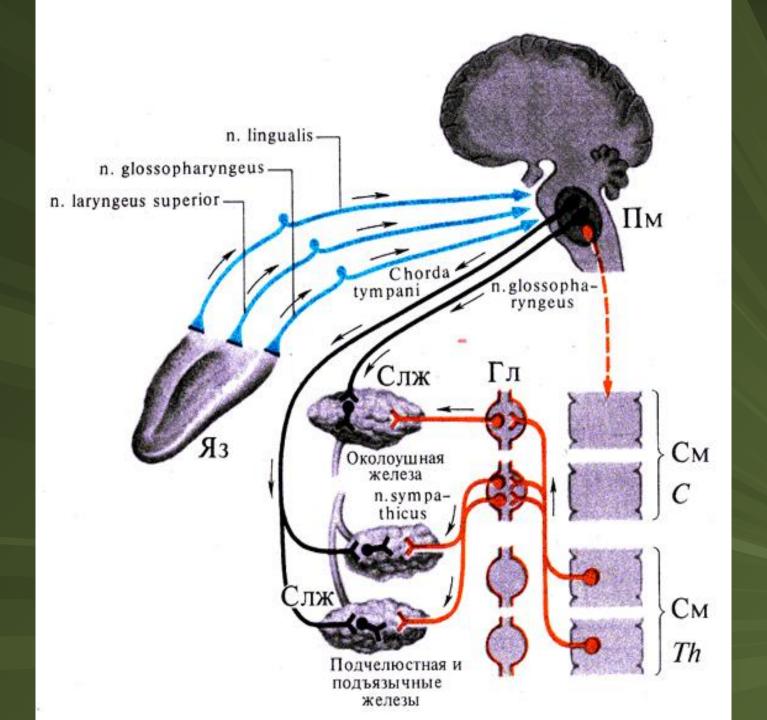
Жевание регулируется рефлекторно.

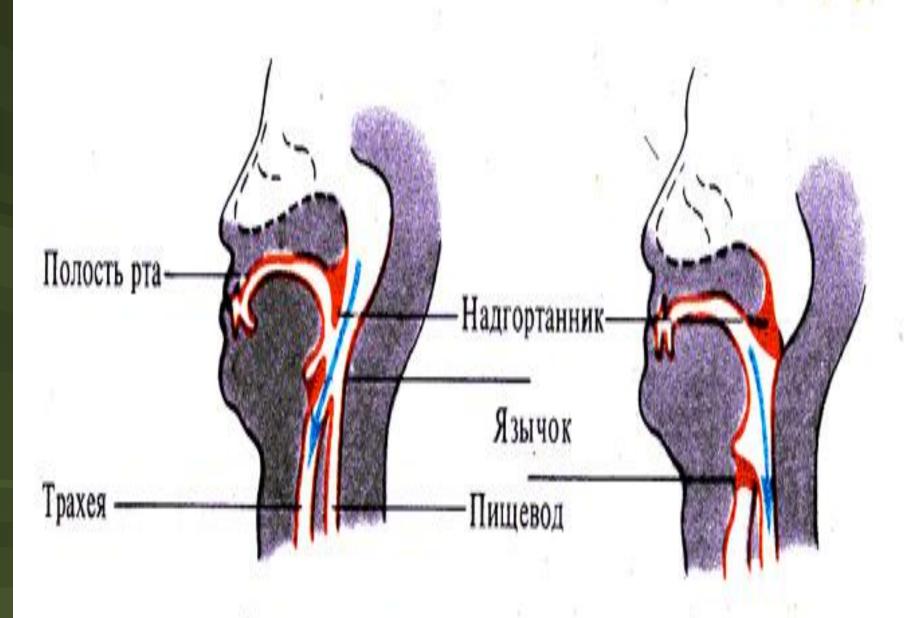
При раздражении рецепторов полости рта пищей нервные импульсы по афферентным волокнам лицевого, языкоглоточного и блуждающего нервов достигают жевательного центра, расположенного в продолговатом мозге. Затем по эфферентным волокнам тройничного и лицевого нервов нервные сигналы достигают жевательных мышц.

Секреторная деятельность в ротовой полости осуществляется 3 парами больших слюнных желез - околоушной, подчелюстной и подъязычной.

А также малыми слюнными железами, расположенными в слизистой губ, щек, неба, языка и глотки.

<u>Функции слюны:</u>


- 1. Пищеварительная (смачивание и ферментативная обработка пищи)
- 2. Защитная (лизоцим, нуклеазы);
- 3. Трофическая (кинины);
- 4. Способствует регенерации поврежденных тканей;
- 5. Выделительная;
- 6. Минерализующая (фосфатазы);
- 6. Инкреторная (выработка БАВ: паротин, инсулинподобный белок, эритропоэтин).


Регуляция слюноотделения осуществляется комплексом условных и безусловных рефлексов.

Раздражение рецепторов глаз (вид пищи), уха (звуки, связанные с приемом пищи), носа (запах пищи) условнорефлекторно способствуют выделению слюны («слюнки текут» заранее, до приема пищи).

Регуляция слюноотделения

Безусловные слюноотделительные рефлексы возникают при раздражении пищей рецепторов полости рта (вкусовых, тактильных, температурных). По афферентным волокнам лицевого, языкоглоточного и блуждающего нерва возбуждение достигает продолговатого мозга, где расположен центр слюноотделения. Отсюда возбуждение по эфферентным волокнам (симпатическим и парасимпатическим) доходит до слюнных желез.

Состояние покоя

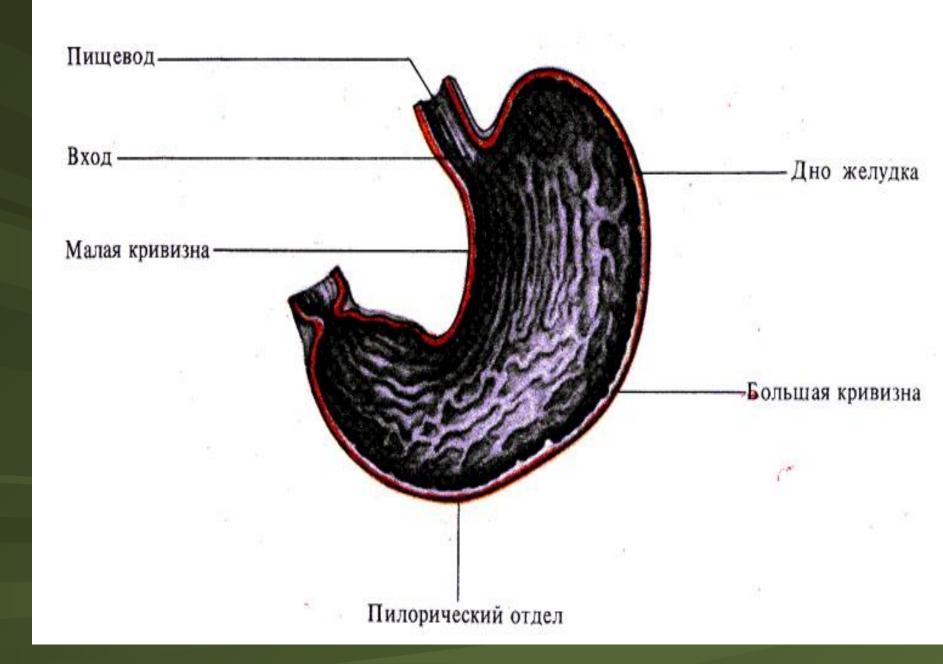
Акт глотания

Пищеварение в желудке

заключается в депонировании пищи и частичном расщеплении белков.

Желудочные железы состоят и трех типов клеток (гландулоцитов):

главные - вырабатывают ферменты (пепсины A, B, C);


обкладочные — вырабатывают соляную кислоту;

добавочные – мукоидную слизь (муцин).

В течение суток выделяется — 2-2,5 л желудочного сока.

В состав желудочного сока входят:

- Соляная кислота
- Ферменты: пепсины А, В, С.
- Слизь (муцин) «видимая» и «невидимая».
- Небелковые органические вещества: мочевина, мочевая кислота, аммиак, аминокислоты, полипептиды.
- Другие ферменты: лизоцим, уреаза, липаза.

Ферменты желудочного сока:

выделяются в полость желудка в неактивном состоянии — в виде пепсиногенов.

Под влиянием соляной кислоты происходит их активация — пепсиногены превращаются в пепсины.

- 1. Пепсин A расщепляет белки до состояния альбумоз и пептонов (оптимум его действия рН 1,5-2).
- 2. Пепсин В (парапепсин) фермент, обладающий выраженной желатиназной активностью.
- 3. Пепсин С (гастриксин) расщепляет белки при оптимуме рH = 3,2-3,5.

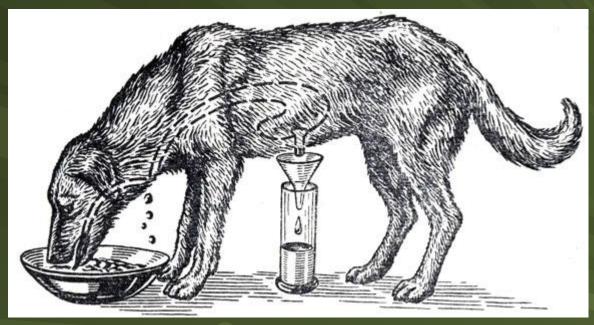
Функции соляной кислоты:

- 1. Вызывает денатурацию и набухание белков;
- 2. Активирует пепсиногены и создает в желудке кислую среду, при которой ферменты (пепсины) наиболее активны;
- 3. Оказывает антибактериальное действие;
- 4. Участвует в регуляции секреторной и моторной функции желудка;
- 5. Обеспечивает переход желудочного химуса (пищевой кашицы) в 12-перстную кишку.

Функции желудочной слизи:

Существует два вида слизи: нерастворимая («видимая») слизь и растворенная («невидимая») слизь.

оболочки пепсином.


- 1. Слизистый барьер желудка выполняет защитную функцию; адсорбирует и ингибирует ферменты, нейтрализует соляную кислоту. В условиях нарушенного слизистого барьера возможно самопереваривание слизистой
- 2. Кроветворная функция: «невидимая» слизь (гастромукопротеид) связывает в желудке витамин В12 и способствует его всасыванию в кишечнике. Витамин В12 необходим для эритропоэза (образования в красном костном мозге эритроцитов).

Регуляция желудочной секреции

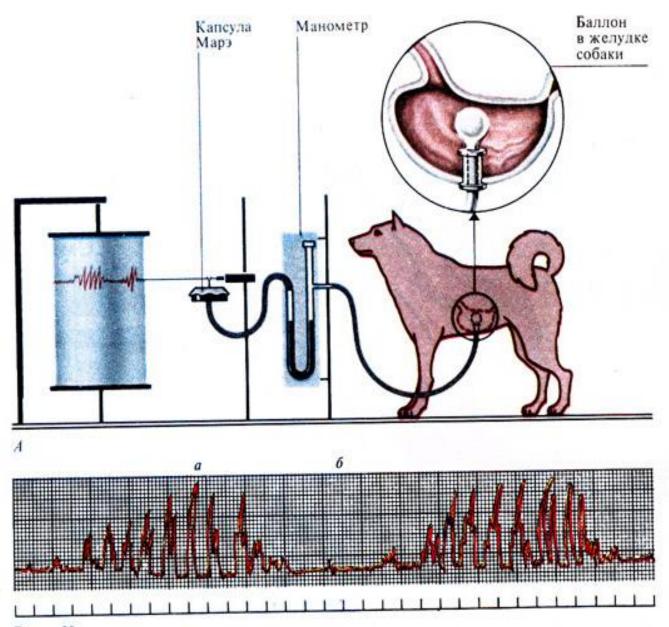
осуществляется в 3 фазы:

- 1. Сложнорефлекторная (мозговая);
- 2. Желудочная (нейрогуморальная);
- 3. Кишечная (нейрогуморальная).
- 1. Сложнорефлекторная фаза включает комплекс условных (при виде, запахе пищи) и безусловных (при раздражении рецепторов полости рта, глотки) рефлексов.

Опыт «мнимого кормления» доказывает, что желудочный сок выделяется заранее, до поступления пищи в желудок.

Опыт «мнимого кормления»

Регуляция желудочной секреции


2. Желудочная (нейрогуморальная) фаза начинается с момента поступления пищи в желудок. Поступившая пища раздражает рецепторы желудка и рефлекторно вызывает выделение желудочного сока. Центр желудочной секреции представлен ядрами блуждающего нерва, расположенными в продолговатом мозге. В эту фазу включается также гуморальный механизм. Эндокринные клетки пилорического отдела желудка (G-клетки) выделяют в кровь гастрин (гормон), который стимулирует функцию желудочных желез (в большей степени обкладочных клеток). Выделяется кислый желудочный сок.

Регуляция желудочной секреции

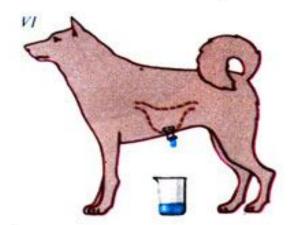
3. Кишечная (нейрогуморальная) фаза желудочной секреции начинается с момента поступления пищевой кашицы в 12-перстную кишку. В эту фазу, как и в желудочную, включаются 2 механизма регуляции: нервно-рефлекторный (при раздражении рецепторов кишки) и гуморальный (выделение в кровь гормонов 12-перстной кишки). Со стороны кишечника формируются как стимулирующие, так и тормозящие влияния на желудочную секрецию.

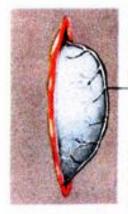
Моторная функция желудка

- 1. Рецептивная релаксация (расслабление мышц в первые минуты после приема пищи)
- 2. Перистальтические (волнообразные) сокращения способствуют передвижению пищи из проксимальных отделов желудка в дистальные.
- 3. Систолические сокращения пилорического отдела способствуют переходу химуса в 12-перстную кишку.
- 4. Тонические сокращения (большой амплитуды и длительности).
- Блуждающий нерв усиливает моторику и секреторную функцию желудка, а симпатический нерв тормозит.

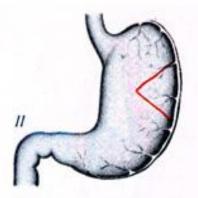
Время,20с

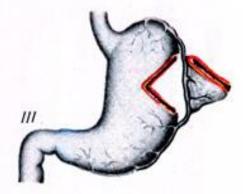
I Разрез по белой линии

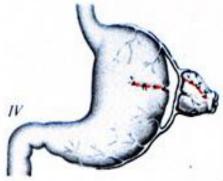

II Большая кривизна желудка



IVВведение фистулы в желудок

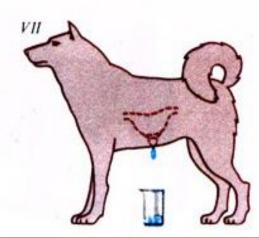

У крепление фистулы в кожной ране



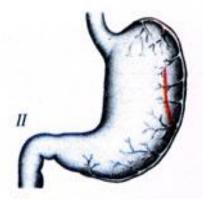

Большая кривизна желудка

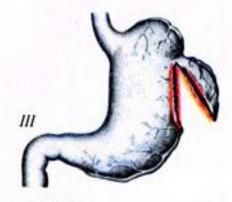
I Разрез по белой линии

Выкраивание «маленького желудочка»


Наложение швов

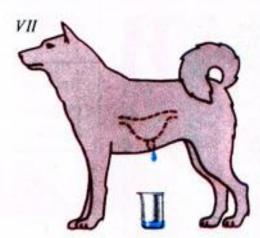
Погружение в брюшную полость




VI Укрепление отверстия маленького желудочка в кожной ране

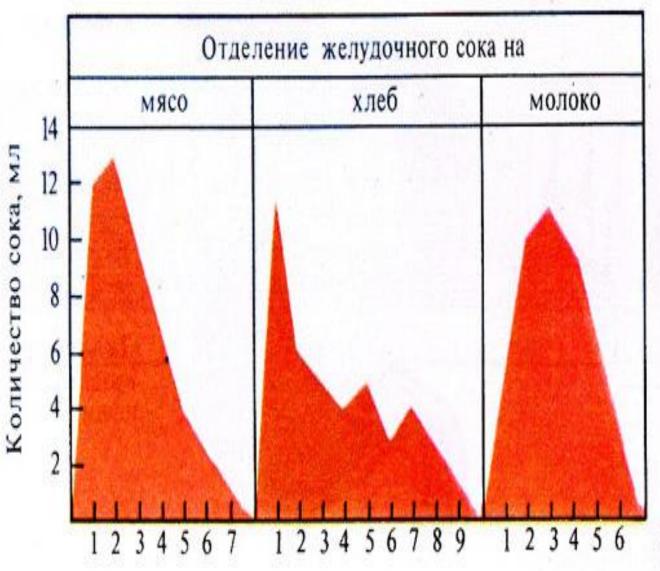
Большая кривизна желудка

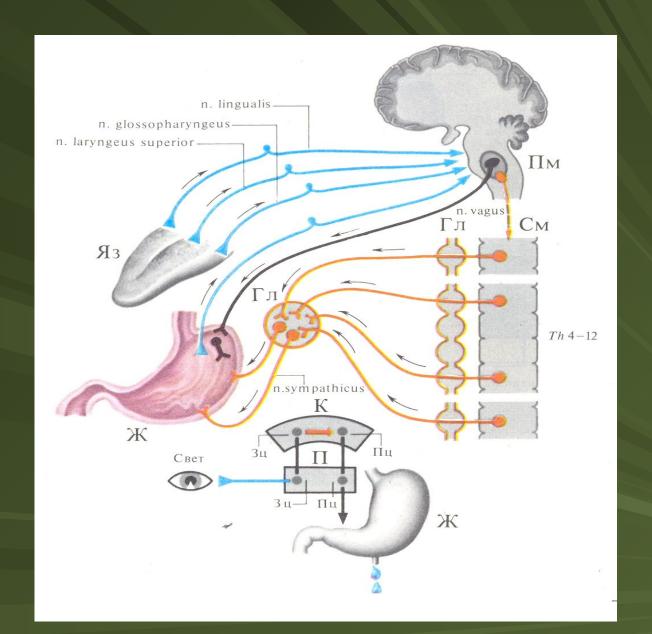
Выкраивание «маленького желудочка»


Наложение швов



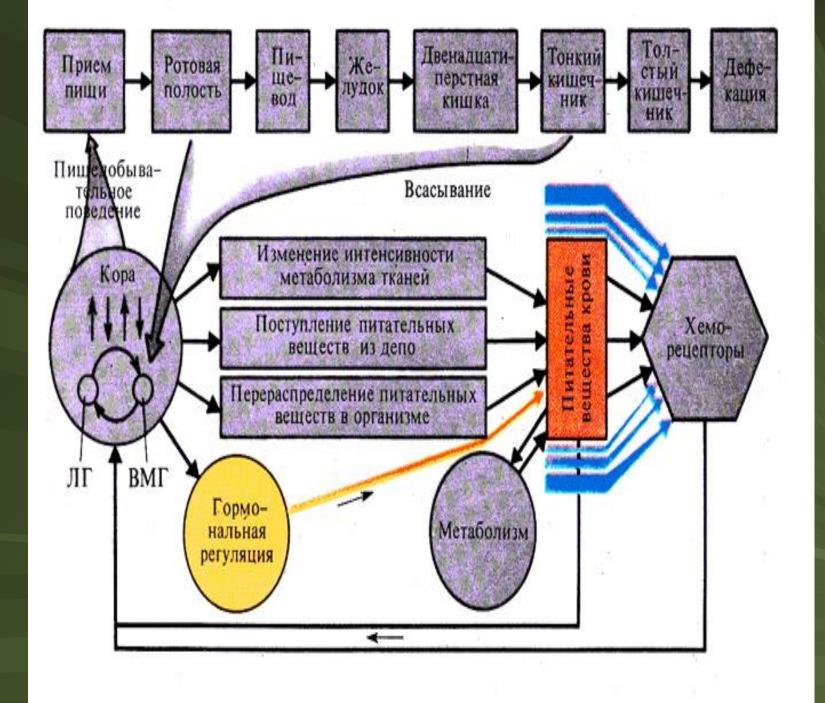
Погружение в брюшную полость


VIУкрепление отверстия маленького желудочка в кожной ране



Характер желудочной секреции (продолжительность, количество и состав желудочного сока) зависит от свойств пищи.

Это наглядно показано в классических павловских кривых выделения желудочного сока на мясо (белок), хлеб (углеводы), молоко (белки, углеводы, жиры).



Время после кормления, ч

Нервно- проводниковая афферентация

