Технологии электронных схем часть 4

Электронные микросхемы

Основой электронных технологий в настоящее время являются полупроводники (semiconductors) — вещества, электропроводность которых увеличивается с ростом температуры и является промежуточной между проводимостью металлов и изоляторов.

Полупроводники

Наиболее часто используемыми в электронике полупроводниками являются кремний и германий. На их основе путем внедрения примесей в определенных точках кристаллов создаются разнообразные полупроводниковые элементы, к которым относятся:

- проводники, коммутирующие активные элементы;
- вентили, выполняющие логические операции;
- транзисторы (полупроводниковые триоды), предназначенные для усиления, генерирования и преобразования электрического тока;

Полупроводники

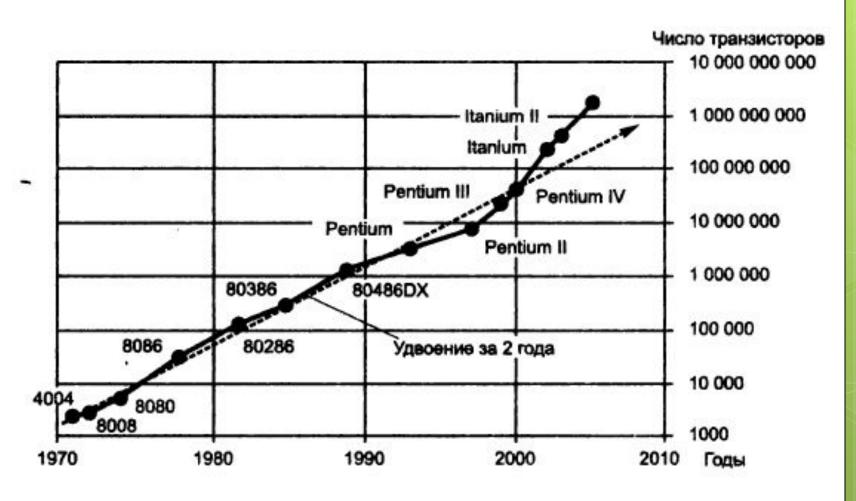
- резисторы, обеспечивающие режимы работы активных элементов;
- приборы с зарядовой связью (ПЗС), предназначенные для кратковременного хранения электрического заряда и используемые в светочувствительных матрицах видеокамер;
- диоды и др.

Технологий построения логических элементов:

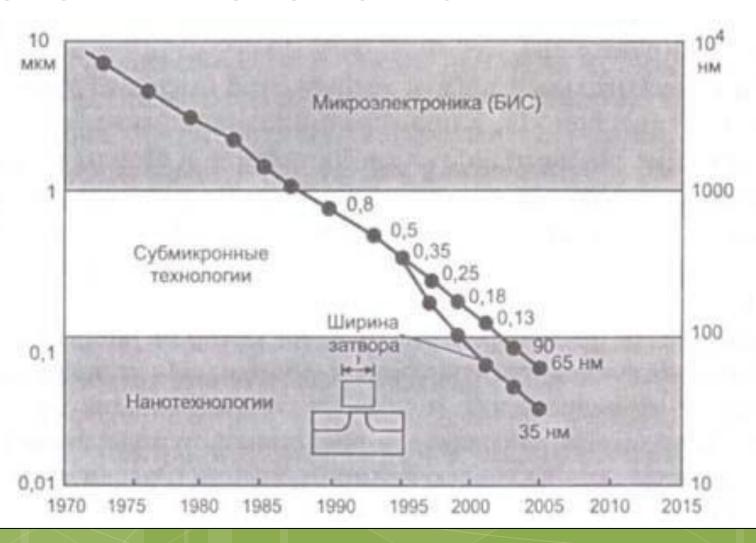
В настоящее время используется несколько технологий построения логических элементов:

- транзисторно-транзисторная логика (TTA, TTL);
- логика на основе комплементарных МОПтранзисторов (КМОП, CMOS);
- логика на основе сочетания комплементарных МОП- и биполярных транзисторов (BiCMOS).

Некоторые полезные правила


- При положительной логике напряжение высокого уровня соответствует логической «1»,
 при отрицательной логике «О».
- В большинстве современных персональных компьютеров напряжение питания составляет 3,3 В (в более ранних версиях, до Pentium 5 В), то выходная «1» задается напряжением 3,3 В.

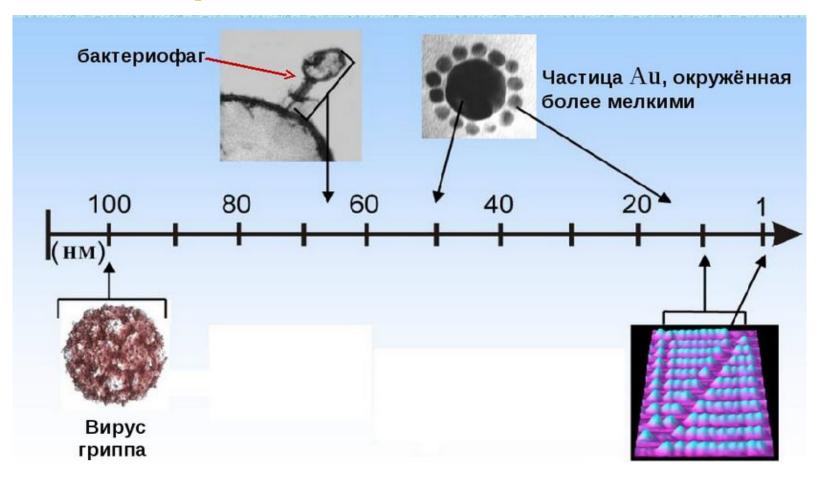
Закон Мура


эмпирическое наблюдение, изначально сделанное Гордоном Муром, согласно которому:

Количество транзисторов, размещаемых на кристалле интегральной схемы, удваивается каждые 24 месяца

Закон Мура

Динамика изменения схемных элементов



Технологии электронных схем

Ключевыми выражениями при описании микросхемных элементов являются такие, как «технология 130 нм», «технологический процесс 0,5 мкм» и т. д.

Это означает, что размеры транзисторов или других элементов (узлов, node) соответственно не превышают 130 нанометров (1 нм = 10^{-9} м), либо же 0,5 микрон (1 мкм = 10^{-6}).

Для сравнения...

Микропроцессоры