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Computer Science and Programming
● Computer Science is more than programming

● The discipline is called informatics in many countries
● Elements of both science and engineering

• Scientists build to learn, engineers learn to build
– Fred Brooks

● Elements of mathematics, physics, cognitive science, 
music, art, and many other fields

● Computer Science is a young discipline
● Fiftieth anniversary in 1997, but closer to forty years of 

research and development
● First graduate program at CMU (then Carnegie Tech) in 

1965
● To some programming is an art, to others a science
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What is Computer Science?
What is it that distinguishes it from the 

separate subjects with which it is related?  
What is the linking thread which gathers 
these disparate branches into a single 
discipline?  My answer to these questions is 
simple --- it is the art of programming a 
computer.  It is the art of designing efficient 
and elegant methods of getting a computer 
to solve problems, theoretical or practical, 
small or large, simple or complex.

                                                         C.A.R.  (Tony)Hoare
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Computer Science
● Artificial Intelligence thinking machines

● Scientific Computing weather, hearts

● Theoretical CS analyze algorithms, models

● Computational Geometry theory of animation, 3-D models

● Architecture hardware-software interface

● Software Engineering peopleware

● Operating Systems run the machine

● Graphics from Windows to Hollywood

● Many other subdisciplines
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Algorithms as Cornerstone of CS
● Step-by-step process that solves a problem

● more precise than a recipe
● eventually stops with an answer
● general process rather than specific to a computer or to a 

programming language
● Searching: for phone number of G. Samsa, whose number is     

929-9338, or for the person whose number is 489-6569
● Sorting: zip codes, hand of cards, exams

● Why do we sort?  What are good algorithms for sorting?
• It depends

– Number of items sorted, kind of items, number of 
processors, ??  

● Do we need a detailed sorting algorithm to play cards?
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Sorting Experiment
● Groups of four people are given a bag containing strips of 

paper
● on each piece of paper is an 8-15 letter English word
● create a sorted list of all the words in the bag
● there are 100 words in a bag

● What issues arise in developing an algorithm for this sort?
●   
●   

● Can you write a description of an algorithm for others to 
follow?
● Do you need a 1-800 support line for your algorithm?
● Are you confident your algorithm works?
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Themes and Concepts of CS
● Theory

● properties of algorithms, how fast, how much memory
● average case, worst case: sorting cards, words, exams
● provable properties, in a mathematical sense 

● Language
● programming languages: C++, Java, C, Perl, Fortran, Lisp, 

Scheme, Visual BASIC, ...
● Assembly language, machine language,
● Natural language such as English

● Architecture
● Main memory, cache memory, disk, USB, SCSI, ...
● pipeline, multi-processor
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Theory, Language, Architecture
● We can prove that in the worst case quicksort is bad 

● doesn’t matter what machine it’s executed on
● doesn’t matter what language it’s coded in
● unlikely in practice, but worst case always possible

● Solutions? Develop an algorithm that works as fast as 
quicksort in the average case, but has good worst case 
performance
● quicksort invented in 1960
● introsort (for introspective sort) invented in 1996

● Sometimes live with worst case being bad
● bad for sorting isn’t bad for other algorithms, needs to be 

quantified using notation studied as part of the theory of 
algorithms
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Abstraction, Complexity, Models
● What is an integer?

● In mathematics we can define integers easily, infinite set 
of numbers and operations on the numbers (e.g.,+, -, *, /)

    {…-3, -2, -1, 0, 1, 2, 3, …}
● In programming, finite memory of computer imposes a 

limit on the magnitude of integers.
• Possible to program with effectively infinite integers (as large 

as computation and memory permit) at the expense of 
efficiency

• At some point addition is implemented with hardware, but 
that’s not a concern to those writing software (or is it?)

• C++ doesn’t require specific size for integers, Java does
● Floating-point numbers have an IEEE standard, required 

because it’s more expensive to do arithmetic with 3.14159 than 
with 2
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Alan Turing (1912--1954)
● Instrumental in breaking codes 

during WW II
● Developed mathematical model of 

a computer called a Turing 
Machine (before computers)

● solves same problems as a 
Pentium III (more slowly)

● Church-Turing thesis
● All “computers” can solve the 

same problems
● Showed there are problems that 

cannot be solved by a computer
● Both a hero and a scientist/ 

mathematician, but lived in an era 
hard for gay people
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Search, Efficiency, Complexity
● Think of a number between 1 and 1,000

● respond high, low, correct, how many guesses needed?

● Look up a word in a dictionary
● Finding the page, the word, how many words do you look 

at?

● Looking up a phone number in the Manhattan, NY directory
● How many names are examined?

● How many times can 1,024 be cut in half?
● 210 = 1,024,          220 = 1,048,576
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Complexity: Travelling Salesperson
● Some problems are hard to 

solve, others seem hard to 
solve but we can’t prove that 
they’re hard (hard means 
computationally expensive)

● Visit every city exactly once
● Minimize cost of travel or 

distance
● Is there a tour for under 

$2,000 ? less than 6,000 
miles?

● Must phrase question as 
yes/no, but we can minimize 
with binary search.

● Is close good enough?

Try all paths, from
every starting point -- 
how long does this take?

a, b, c, d, e, f, g
b, a, c, d, e, f, g ...
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Complexity Classifications
● Given a route and a claim: This 

route hits all cities for less than 
$2,000
● verify properties of route 

efficiently.
● Hard to find optimal 

solution

● Verification simple, finding 
optimal solution is hard

● Other problems are similar

Pack trucks with barrels,
use minimal # trucks

Ideas?
Problems are the “same hardness”: 
solve one efficiently, solve them all
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Are hard problems easy?
● P = easy problems, NP = “hard” problems

●  P stands for polynomial, like x2 or x3

●  NP stands for non-deterministic, polynomial
• guess a good solution

● Question: P = NP ?
●  if yes, a whole suite of difficult problems can be solved 

efficiently
●  if no, none of the hard problems can be solved efficiently

● Problem posed in 1971, central to the field 

Most computer scientists believe P ≠NP, this is arguably the most 
important unsolved problem in computer science
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C.A.R. (Tony) Hoare (b. 1934)
● Won Turing award in 1980
● Invented quicksort, but didn’t 

see how simple it was to 
program recursively

● Developed mechanism and 
theory for concurrent 
processing

● In Turing Award speech used 
“Emporer’s New Clothes” as 
metaphor for current fads in 
programming

     “Beginning students don’t know 
how to do top-down design 
because they don’t know which 
end is up”
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Creating a Program
● Specify the problem

● remove ambiguities
● identify constraints

● Develop algorithms, design 
classes, design software 
architecture

● Implement program
● revisit design
● test, code, debug
● revisit design

● Documentation, testing, 
maintenance of program

● From ideas to electrons
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From High- to Low-level languages
● C++ is a multi-purpose language, we’ll use it largely as an 

object-oriented language, but not exclusively
● Contrast, for example, with Java in which everything is a 

class
● Contrast with Fortran in which nothing is a class

● Compilers translate C++ to a machine-specific executable 
program
● The compiler is a program, input is C++, output is an 

executable
● What language is the compiler written in?
● In theory C++ source code works on any machine given a 

compiler for the machine
● C++ and other programming language are more syntactically 

rigid than English and other natural languages
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Levels of Programming Language
● Machine specific assembly language, Sparc on left, Pentium 

on right, both generated from the same C++

main:                              main:                          
        save %sp,-128,%sp                  pushl %ebp             
        mov 7,%o0                          movl %esp,%ebp         
        st %o0,[%fp-20]                    subl $12,%esp          
        mov 12,%o0                         movl $7,-4(%ebp)       
        st %o0,[%fp-24]                    movl $12,-8(%ebp)      
        ld [%fp-20],%o0                    movl -4(%ebp),%eax     
        ld [%fp-24],%o1                    imull -8(%ebp),%eax    
        call .umul,0                       movl %eax,-12(%ebp)    
        nop                                xorl %eax,%eax         
        st %o0,[%fp-28]                    jmp .L1                
        mov 0,%i0                          .align 4               
        b .LL1                             xorl %eax,%eax         
        nop                                jmp .L1                
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Alternatives to compilation
● Some languages are interpreted, Scheme and Java are examples

● like simultaneous translation instead of translation of 
written document.  The same word may be translated many 
times

● The interpreter is a program that translates one part of a 
source code at a time

• The interpreter is machine specific, written in some 
programming language

● JVM, the Java Virtual Machine
● Like a PC or Mac but machine is virtual, written in software
● Executes Java byte codes which are created from Java source

• Like assembly language: between source code and executable
● JVM must be written for each architecture, e.g., Linux, 

Windows, Mac, BeOS, ...
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What is a computer?
● Turing machine: invented by 

Alan Turing in 1936 as a 
theoretical model

infinite tape, moving
tape-reader

0 1

Mainframe, PC,laptop, 
supercomputer

A computer is a computer,
is a computer, 
Church-Turing
Thesis, all have same 
“power”
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Chips, Central Processing Unit (CPU)
● CPU chips

● Pentium (top)
● G3 (bottom)
● Sound, video, …

● Moore’s Law
● chip “size” (# transistors)  

doubles every 12--18 months 
(formulated in 1965)

● 2,300 transistors Intel 4004, 
7.5 million Intel Pentium II
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Why is programming fun?

What delights may its practitioner expect as a reward?

First is the sheer joy of making things

Second is the pleasure of making things that are useful 

Third is the fascination of fashioning complex puzzle-like objects of 
interlocking moving parts 

Fourth is the joy of always learning

Finally, there is the delight of working in such a tractable medium.  The 
programmer, like the poet, works only slightly removed from pure 
thought-stuff.

Fred Brooks


