
A Computer Science Tapestry 1.1

A Computer Science Tapestry
Exploring Programming and Computer Science with C++
Second Edition

Owen Astrachan
Duke University

McGraw-Hill

A Computer Science Tapestry 1.2

Computer Science and Programming
● Computer Science is more than programming

● The discipline is called informatics in many countries
● Elements of both science and engineering

• Scientists build to learn, engineers learn to build
– Fred Brooks

● Elements of mathematics, physics, cognitive science,
music, art, and many other fields

● Computer Science is a young discipline
● Fiftieth anniversary in 1997, but closer to forty years of

research and development
● First graduate program at CMU (then Carnegie Tech) in

1965
● To some programming is an art, to others a science

A Computer Science Tapestry 1.3

What is Computer Science?
What is it that distinguishes it from the

separate subjects with which it is related?
What is the linking thread which gathers
these disparate branches into a single
discipline? My answer to these questions is
simple --- it is the art of programming a
computer. It is the art of designing efficient
and elegant methods of getting a computer
to solve problems, theoretical or practical,
small or large, simple or complex.

 C.A.R. (Tony)Hoare

A Computer Science Tapestry 1.4

Computer Science
● Artificial Intelligence thinking machines

● Scientific Computing weather, hearts

● Theoretical CS analyze algorithms, models

● Computational Geometry theory of animation, 3-D models

● Architecture hardware-software interface

● Software Engineering peopleware

● Operating Systems run the machine

● Graphics from Windows to Hollywood

● Many other subdisciplines

A Computer Science Tapestry 1.5

Algorithms as Cornerstone of CS
● Step-by-step process that solves a problem

● more precise than a recipe
● eventually stops with an answer
● general process rather than specific to a computer or to a

programming language
● Searching: for phone number of G. Samsa, whose number is

929-9338, or for the person whose number is 489-6569
● Sorting: zip codes, hand of cards, exams

● Why do we sort? What are good algorithms for sorting?
• It depends

– Number of items sorted, kind of items, number of
processors, ??

● Do we need a detailed sorting algorithm to play cards?

A Computer Science Tapestry 1.6

Sorting Experiment
● Groups of four people are given a bag containing strips of

paper
● on each piece of paper is an 8-15 letter English word
● create a sorted list of all the words in the bag
● there are 100 words in a bag

● What issues arise in developing an algorithm for this sort?
●
●

● Can you write a description of an algorithm for others to
follow?
● Do you need a 1-800 support line for your algorithm?
● Are you confident your algorithm works?

A Computer Science Tapestry 1.7

Themes and Concepts of CS
● Theory

● properties of algorithms, how fast, how much memory
● average case, worst case: sorting cards, words, exams
● provable properties, in a mathematical sense

● Language
● programming languages: C++, Java, C, Perl, Fortran, Lisp,

Scheme, Visual BASIC, ...
● Assembly language, machine language,
● Natural language such as English

● Architecture
● Main memory, cache memory, disk, USB, SCSI, ...
● pipeline, multi-processor

A Computer Science Tapestry 1.8

Theory, Language, Architecture
● We can prove that in the worst case quicksort is bad

● doesn’t matter what machine it’s executed on
● doesn’t matter what language it’s coded in
● unlikely in practice, but worst case always possible

● Solutions? Develop an algorithm that works as fast as
quicksort in the average case, but has good worst case
performance
● quicksort invented in 1960
● introsort (for introspective sort) invented in 1996

● Sometimes live with worst case being bad
● bad for sorting isn’t bad for other algorithms, needs to be

quantified using notation studied as part of the theory of
algorithms

A Computer Science Tapestry 1.9

Abstraction, Complexity, Models
● What is an integer?

● In mathematics we can define integers easily, infinite set
of numbers and operations on the numbers (e.g.,+, -, *, /)

 {…-3, -2, -1, 0, 1, 2, 3, …}
● In programming, finite memory of computer imposes a

limit on the magnitude of integers.
• Possible to program with effectively infinite integers (as large

as computation and memory permit) at the expense of
efficiency

• At some point addition is implemented with hardware, but
that’s not a concern to those writing software (or is it?)

• C++ doesn’t require specific size for integers, Java does
● Floating-point numbers have an IEEE standard, required

because it’s more expensive to do arithmetic with 3.14159 than
with 2

A Computer Science Tapestry 1.10

Alan Turing (1912--1954)
● Instrumental in breaking codes

during WW II
● Developed mathematical model of

a computer called a Turing
Machine (before computers)

● solves same problems as a
Pentium III (more slowly)

● Church-Turing thesis
● All “computers” can solve the

same problems
● Showed there are problems that

cannot be solved by a computer
● Both a hero and a scientist/

mathematician, but lived in an era
hard for gay people

A Computer Science Tapestry 1.11

Search, Efficiency, Complexity
● Think of a number between 1 and 1,000

● respond high, low, correct, how many guesses needed?

● Look up a word in a dictionary
● Finding the page, the word, how many words do you look

at?

● Looking up a phone number in the Manhattan, NY directory
● How many names are examined?

● How many times can 1,024 be cut in half?
● 210 = 1,024, 220 = 1,048,576

A Computer Science Tapestry 1.12

Complexity: Travelling Salesperson
● Some problems are hard to

solve, others seem hard to
solve but we can’t prove that
they’re hard (hard means
computationally expensive)

● Visit every city exactly once
● Minimize cost of travel or

distance
● Is there a tour for under

$2,000 ? less than 6,000
miles?

● Must phrase question as
yes/no, but we can minimize
with binary search.

● Is close good enough?

Try all paths, from
every starting point --
how long does this take?

a, b, c, d, e, f, g
b, a, c, d, e, f, g ...

A Computer Science Tapestry 1.13

Complexity Classifications
● Given a route and a claim: This

route hits all cities for less than
$2,000
● verify properties of route

efficiently.
● Hard to find optimal

solution

● Verification simple, finding
optimal solution is hard

● Other problems are similar

Pack trucks with barrels,
use minimal # trucks

Ideas?
Problems are the “same hardness”:
solve one efficiently, solve them all

A Computer Science Tapestry 1.14

Are hard problems easy?
● P = easy problems, NP = “hard” problems

● P stands for polynomial, like x2 or x3

● NP stands for non-deterministic, polynomial
• guess a good solution

● Question: P = NP ?
● if yes, a whole suite of difficult problems can be solved

efficiently
● if no, none of the hard problems can be solved efficiently

● Problem posed in 1971, central to the field

Most computer scientists believe P ≠NP, this is arguably the most
important unsolved problem in computer science

A Computer Science Tapestry 1.15

C.A.R. (Tony) Hoare (b. 1934)
● Won Turing award in 1980
● Invented quicksort, but didn’t

see how simple it was to
program recursively

● Developed mechanism and
theory for concurrent
processing

● In Turing Award speech used
“Emporer’s New Clothes” as
metaphor for current fads in
programming

 “Beginning students don’t know
how to do top-down design
because they don’t know which
end is up”

A Computer Science Tapestry 1.16

Creating a Program
● Specify the problem

● remove ambiguities
● identify constraints

● Develop algorithms, design
classes, design software
architecture

● Implement program
● revisit design
● test, code, debug
● revisit design

● Documentation, testing,
maintenance of program

● From ideas to electrons

A Computer Science Tapestry 1.17

From High- to Low-level languages
● C++ is a multi-purpose language, we’ll use it largely as an

object-oriented language, but not exclusively
● Contrast, for example, with Java in which everything is a

class
● Contrast with Fortran in which nothing is a class

● Compilers translate C++ to a machine-specific executable
program
● The compiler is a program, input is C++, output is an

executable
● What language is the compiler written in?
● In theory C++ source code works on any machine given a

compiler for the machine
● C++ and other programming language are more syntactically

rigid than English and other natural languages

A Computer Science Tapestry 1.18

Levels of Programming Language
● Machine specific assembly language, Sparc on left, Pentium

on right, both generated from the same C++

main: main:
 save %sp,-128,%sp pushl %ebp
 mov 7,%o0 movl %esp,%ebp
 st %o0,[%fp-20] subl $12,%esp
 mov 12,%o0 movl $7,-4(%ebp)
 st %o0,[%fp-24] movl $12,-8(%ebp)
 ld [%fp-20],%o0 movl -4(%ebp),%eax
 ld [%fp-24],%o1 imull -8(%ebp),%eax
 call .umul,0 movl %eax,-12(%ebp)
 nop xorl %eax,%eax
 st %o0,[%fp-28] jmp .L1
 mov 0,%i0 .align 4
 b .LL1 xorl %eax,%eax
 nop jmp .L1

A Computer Science Tapestry 1.19

Alternatives to compilation
● Some languages are interpreted, Scheme and Java are examples

● like simultaneous translation instead of translation of
written document. The same word may be translated many
times

● The interpreter is a program that translates one part of a
source code at a time

• The interpreter is machine specific, written in some
programming language

● JVM, the Java Virtual Machine
● Like a PC or Mac but machine is virtual, written in software
● Executes Java byte codes which are created from Java source

• Like assembly language: between source code and executable
● JVM must be written for each architecture, e.g., Linux,

Windows, Mac, BeOS, ...

A Computer Science Tapestry 1.20

What is a computer?
● Turing machine: invented by

Alan Turing in 1936 as a
theoretical model

infinite tape, moving
tape-reader

0 1

Mainframe, PC,laptop,
supercomputer

A computer is a computer,
is a computer,
Church-Turing
Thesis, all have same
“power”

A Computer Science Tapestry 1.21

Chips, Central Processing Unit (CPU)
● CPU chips

● Pentium (top)
● G3 (bottom)
● Sound, video, …

● Moore’s Law
● chip “size” (# transistors)

doubles every 12--18 months
(formulated in 1965)

● 2,300 transistors Intel 4004,
7.5 million Intel Pentium II

A Computer Science Tapestry 1.22

Why is programming fun?

What delights may its practitioner expect as a reward?

First is the sheer joy of making things

Second is the pleasure of making things that are useful

Third is the fascination of fashioning complex puzzle-like objects of
interlocking moving parts

Fourth is the joy of always learning

Finally, there is the delight of working in such a tractable medium. The
programmer, like the poet, works only slightly removed from pure
thought-stuff.

Fred Brooks

