

Advanced Product Quality Planning (APQP) and Production Part Approval Process (PPAP)

Supplier Overview Training

Document CQD-116; Rev 1; 1/15/15

What is APQP?

Advanced Product Quality Planning Cycle

- Advanced Product Quality Planning method <u>to</u>
 assure (обеспечить) that a product satisfies the
 customer (both internal (внутренний) and
 external/внешний)
- The goal of APQP is to:
 - Plan before acting
 - Anticipate (предусмотреть) and prevent
 (предотвратить) issues
 - Validate before moving forward
 - Facilitate (облегчить) communication
- Each Advanced Product Quality Plan is unique and is a living document

APQP Background

- Automotive industry challenges:
 - Innovation, more complex product
 - Reduce NPD times (сократить время разработки нов.продукта)
 - Complicated Supply chain (сложная цепочка поставки)
 - Increasing customer and quality requirements

Solution:

- Ford, GM, Chrysler APQP Task Force jointly (together) developed (разработали) the procedure in the late 80's to standardize their respective supplier quality systems.
- Continuous Improvement:
 - Many industries outside the Automotive industry have started to use the AIAG APQP process to achieve similar benefits

APQP – timing chart and phases - AIAG

The Advanced Product Quality Planning process consists of (состоит из) **four** phases and **five** major activities (основных видов работ) and has some 20+ supporting tools (e.g. DFMEA, PFMEA, CTQ, Special Characteristics, Control Plan, SPC) along with (а также) ongoing feedback assessment (оценка обратной связи) and corrective action.

Feedback, Assessment, Corrective actions

Evaluate outputs, effectiveness of the product quality planning efforts.

INPUTS:

- Production Trial Run / цикл испытания производства
- Measurement Systems
 Evaluation / оценка систем
 измерения
- Preliminary Process Capability Study / предварительный анализ производственной мощности процесса
- Production Part Approval
- Production Validation Testing
- Packaging Evaluation
- Production Control Pi
- Quality Planning Signary and Management Support

OUTPUTS:

- Reduced Variation
- Improved Customer Satisfaction
- Improved Delivery and Service
- Effective use of best practice, lessons learned
- Maximum ROI
- Minimum Waste

APQP Summary:

What we do:

- Design Quality / качество с конструкторской т.3
 - DEMEA / PEMEA / DEM/A
- Manufacturing Quality / качество производства
 - Process Flows (карта технологического процесса)
 - Capability Analysis (анализ произв. мощностей)
 - Process Validation
 - Run at rate / испытание на непрерывном производстве
- Supplier Qualification & Quality Requirements / аудит поставщика
- **Product Qualification**
 - 1st Article Inspection / поверка 1-ой годной детали
 - PPAP
 - Tooling & Gauges / оснастка и калибры

Testing

How we do it: **APQP**

UP

FRONT

DETAILED

QUALITY

PLANNING / предварите льное тщательное планирован ие качества

What we get:

- Defect Free Launches / запуск с нулевым уровнем брака
- **Reduced Warranty Claims** / сокращение числа обращений по гарантии **Customer Satisfaction**
- Robust Products / качественная продукция
- **Greater Supplier Control**
- Reduced supplier cost

Leadership Engagement is Critical

Production Part Approval Process (PPAP)

What is PPAP?

- Production Part Approval Process
- Standard used to formally reduce risks prior to product release / до выпуска изделия, in a team oriented manner using well established tools and techniques
- Initially developed by AIAG (Auto Industry Action Group) in 1993 with input from the Big 3 - Ford, Chrysler, and GM
- AIAG's 4th edition effective June 1, 2006 is the most recent version
- PPAP has now spread to / распространился many different industries beyond automotive

When is PPAP Required? / Когда нужен PPAP

- New part
- Engineering change(s)
- Durable Tooling: transfer, replacement, refurbishment, or additional / Оснастка с высокой стойкостью: перенос, замена, ремонт и т.п.
 - Tooling inactive > one year
- Correction of discrepancy / исправление вариаций в процессе
- Change to optional construction or material
- Sub-supplier or material source (источник) change
- Change in part processing
- Parts produced at a new or additional location

PPAP is required with any significant change to product or process!

PPAP Element #4: Design Failure Mode and Effects Analysis (DFMEA)

- Provide potential cause and effect (причина и следствие) relationships for the basic design of the product
- Helps to plan design needs for:
 - Materials selection
 - Tolerance stack-up / наложение допусков друг на друга
 - Software
 - Interfaces
 - DVP&R (life cycle tests испытания производственного цикла)
- Employs R.P.N rating system / ΠΥΡ
 - High R.P.N's and Severity> 8 need recommended Corrective Actions (CA)
- PROLaunch element
 - Initial DFMEA in Phase 2
 - Complete DFMEA in Phase 3

Process Map and APQP

- During which APQP phase would you first create a process map? / На каком этапе APQP нужно составить карту процесса?
 - ✓ APQP: Phase 1 Planning
- Why not wait until later in the process? / Почему не позже?
 - A basic understanding of the process assists in <u>cost</u> estimating/ quoting (составление финансовой сметы и RFQ)
- Why would volumes and lead-times be important to know? / Почему важно знать объёмы и сроки исполнения заказов?
 - Volumes and lead-times might influence the manufacturing processes you select (i.e. automated processes for high volume)

FMEA Origins

- Initially developed by the US
 Military as Failure Mode Effects
 and Criticality Analysis (FMECA) /
 Первоначально разработан
 военным ведомством США как
 инструмент анализа
 последствий неисправностей и
 критичности)
- Widely adopted by NASA during the 1960s to prevent errors on the Apollo program / широко применялся НАСА в 60-е для предотвращения неисправностей в программе Апоплон
- Brought over to the automotive industry by Ford after issues with Pinto fuel tanks / взят на вооружение автопромом после проблем с бензобаком Pinto.

Apollo 1 Failure

Ford Pinto

