ASYMPTOTES of GRAPHS Vertical Horizontal Slant (Oblique)

Definition of an Asymptote

- An asymptote is a straight line boundary for a graph of f(x).
- F(x) gets closer and closer to the asymptote as it approaches either a specific value *a* or positive or negative infinity.
- The functions most likely to have asymptotes are rational functions

Vertical Asymptotes

Vertical asymptotes occur when the following condition is met:

- The denominator of the *simplified* rational function is equal to 0.
- The *simplified* rational function may have cancelled factors common to both the numerator and denominator.

Finding Vertical Asymptotes Example 1

Given the function $f(x) = \frac{2-5x}{2+2x}$

• Let denominator (2+2x) = 0

2 + 2x = 02(1+x) = 01+x = 0

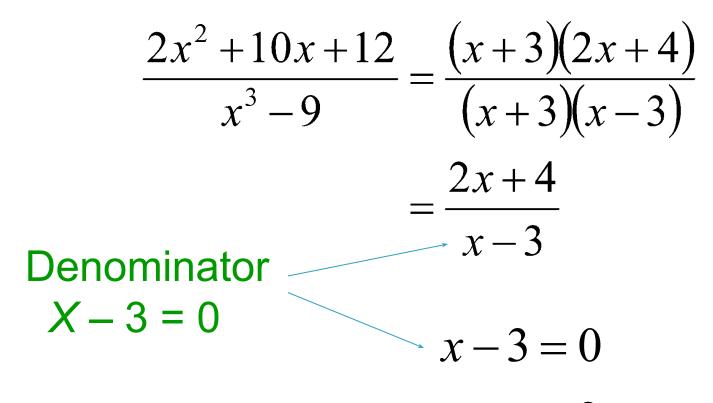
Vertical asymptote x = -1

The vertical dotted line at x = -1 is the vertical asymptote. **Finding Vertical Asymptotes Example 2**

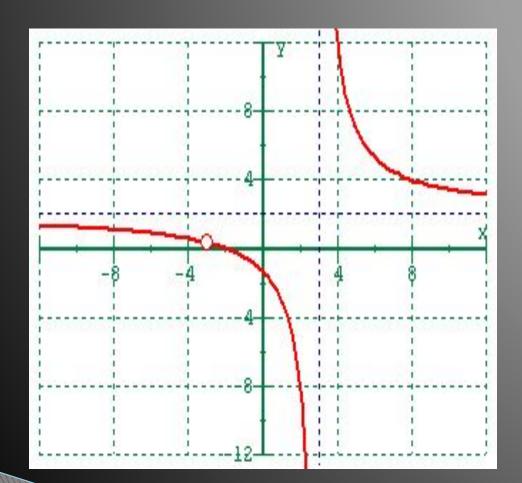
 $f(x) = \frac{2x^2 + 10x + 12}{x^2 - 9}$ 1. Factorise the **numerator** and denominator $\frac{2x^2 + 10x + 12}{x^3 - 9} = \frac{(x + 3)(2x + 4)}{(x + 3)(x - 3)}$ 2x + 4

 $\overline{x-3}$

2. Cancel any Common factors.

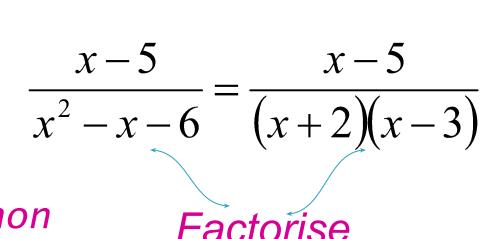


Vertical Asymptote $\longrightarrow x = 3$



The vertical dotted line at x = 3 is the vertical asymptote

Finding Vertical Asymptotes Example 3 $g(x) = \frac{x-5}{x^2-x-6}$



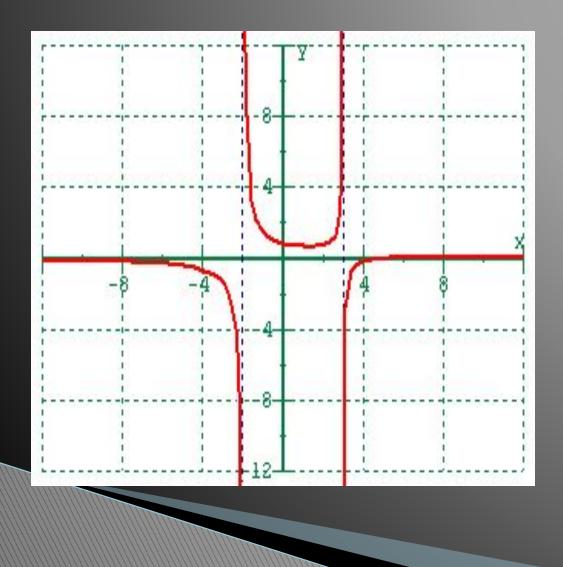
There are no common factors to cancel.

Finding Vertical Asymptotes Example 3 Con't.

$$\frac{x-5}{x^2-x-6} = \frac{x-5}{(x+2)(x-3)}$$
 Denominator = 0
 $x+2=0$ $x-3=0$
 $x=-2$ $x=3$

g(x) has two vertical asymptotes

$$x = -2$$
 and $x = 3$



The two vertical dotted lines at x = -2 and x = 3 are the vertical asymptotes

Horizontal Asymptotes

Rational Function: N<u>umerator (N)</u> Denominator (D)

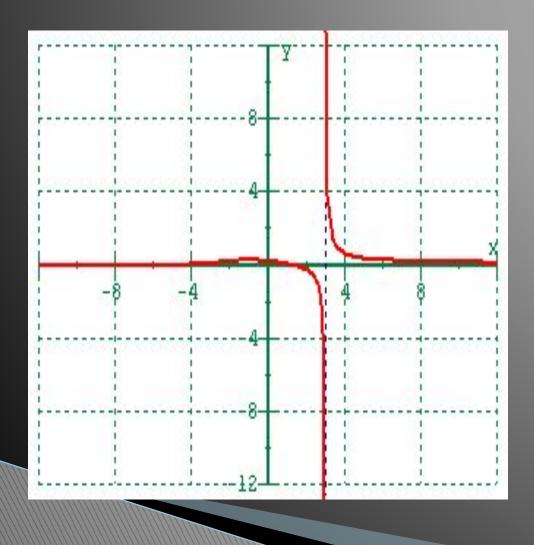
1) **Degree N < Degree D** IHorizontal Asymptote: y=0

2) **Degree N = Degree D** I Horizontal Asymptote: y= Co-eff. of leading 'x'

3) Degree N > Degree D I Horizontal Asymptote: y = slant or DNE

Finding Horizontal Asymptotes Example 4 $f(x) = \frac{x^2 + 3x - 5}{x^3 - 27}$ N

Horizontal asymptote: y=0Degree N < Degree D $(x \rightarrow \infty \text{ and } x \rightarrow -\infty)$ *horizontal line* y = 0



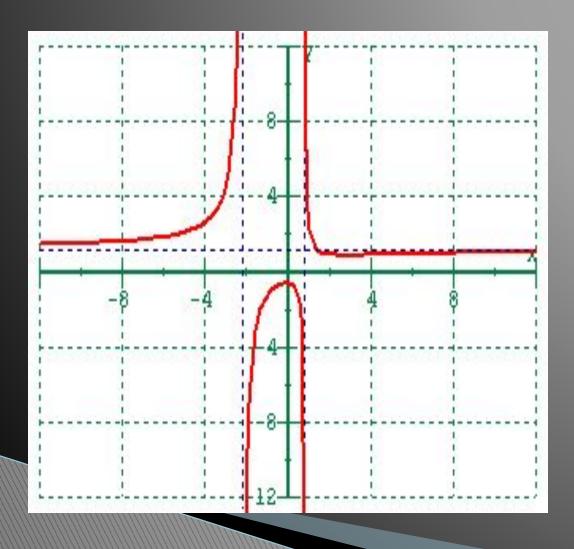
The horizontal line y = 0 is the horizontal asymptote.

Finding Horizontal Asymptotes Example 5 $g(x) = \frac{6x^2 - 3x + 5}{5x^2 + 7x - 9}$

Degree N = Degree D Horizontal asymptote: $y=^{6}/_{5}$

Note: 6 and 5 are leading coefficients

 $(x \rightarrow \infty \text{ and as } x \rightarrow -\infty)$ line $y = \frac{6}{5}$

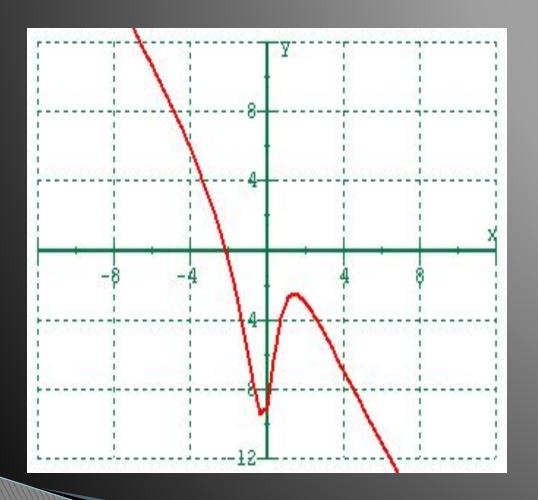


The horizontal dotted line at $y = \frac{6}{5}$ is the horizontal asymptote.

Finding Horizontal Asymptotes Example 6

$$f(x) = \frac{-2x^3 + 5x - 9}{x^2 + 1}$$

No horizontal asymptote Degree N > Degree D



Finding a Slant Asymptote Example 7 $x^3 + 2x^2 + 5x = 0$

$$f(x) = \frac{x^3 + 2x^2 + 5x - 9}{x^2 - x + 1} \quad \mathsf{D}$$

Slant asymptote
Degree N is <u>one</u> bigger than Degree D.
Use long division: divide N by D

Finding a Slant Asymptote Example 7 Con't.

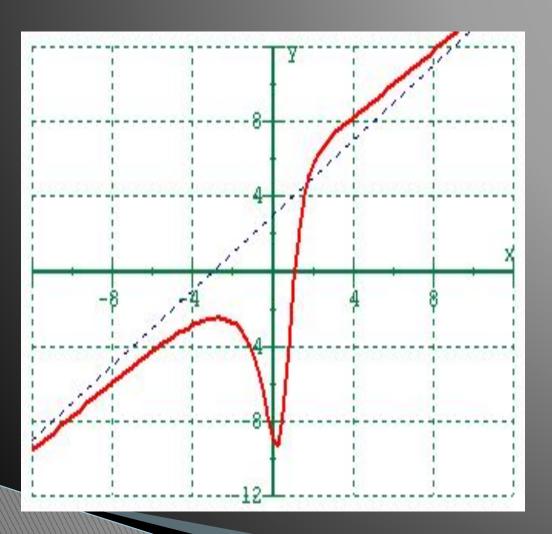
Finding a Slant Asymptote Example 7 Con't.

Ignore the remainder:

Use the quotient: x+3

The slant asymptote is:

$$y = x + 3$$



The slanted line y = x + 3 is the slant asymptote

Problems

Find the vertical asymptotes, horizontal asymptotes and slant asymptotes for each of the following functions.

ANSWERS to Problems:

$$f(x) = \frac{x^2 + 2x - 15}{x^2 + 7x + 10}$$

Vertical:x = -2Horizontal :y = 1Slant:noneHole:at x = -5

$$g(x) = \frac{2x^2 + 5x - 7}{x - 3}$$

Vertical:x = 3Horizontal :noneSlant:y = 2x + 11Hole:none