БИОХИМИЧЕСКИЙ МЕХАНИЗМ АВТОЛИЗА

Шорохова Анастасия Группа 10-ОП

Автолиз — это гидролитический распад (самопереваривание) многих органических веществ тела (гликогена, фосфатов, жира, белков и др.) под влиянием ферментов, содержащихся в тканях.

В основе автолитических превращений лежат изменения углеводной системы, системы ресинтеза АТФ и состояния миофибриллярных белков, входящих в систему сокращения.

Таблица 1. Автолитические изменения углеводов, фосфорсодержащих соединений, липидов и белков.

Период	Биологический процесс	Ферменты	рН мышечной ткани
Превращения углеводов	Послеубойный гликолиз	Амилаза, гликозидаза	7-6,5
Изменения фосфорсодержащих соединений	Распад АТФ	АТФ-азы	6,5-6,0
Превращения липидов	Гидролиз ТАГ и их окисление	Пироксидаза, каталаза, липаза	6,0
Изменения белков	Распад белков, гниение	Протеазы	5,3

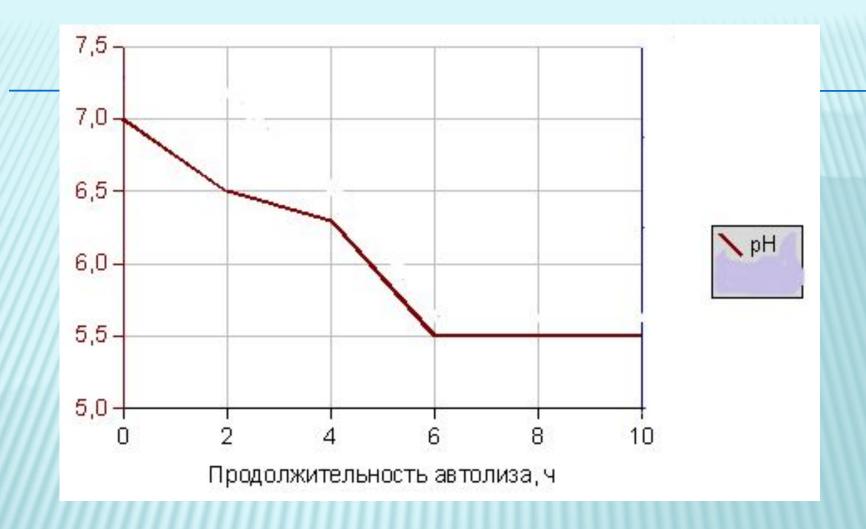


Рис.1. Изменение рН при автолизе

Одним из основных углеводов мышечной ткани является гликоген - важнейший энергетический материал. Он используется при мышечной работе и накапливается при отдыхе. Содержание его зависит от тренированности, упитанности, физиологического состояния и генотипа животных. Сразу после убоя животного в мышцах содержится 0,3-0,9% (иногда 2%) гликогена и 0,05% глюкозы.

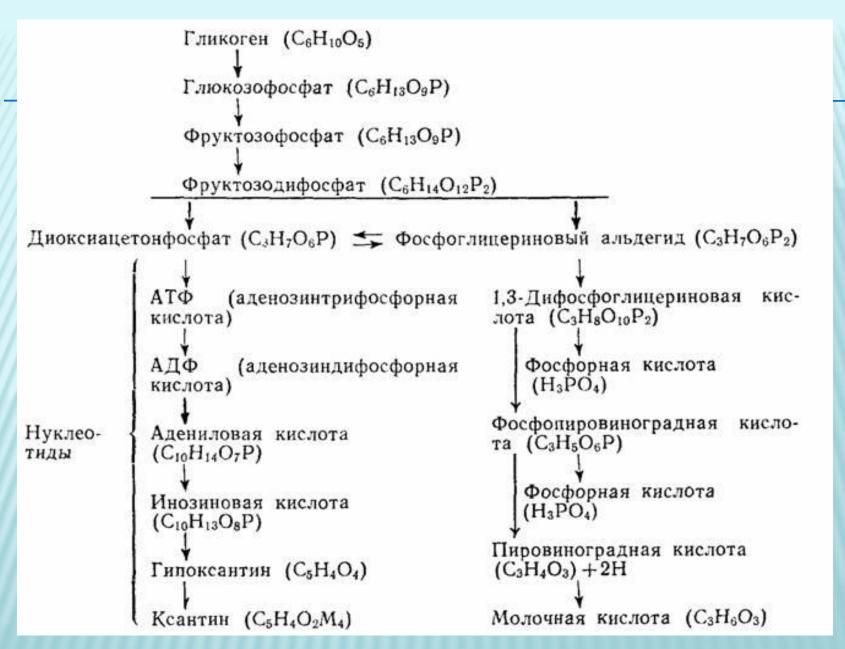
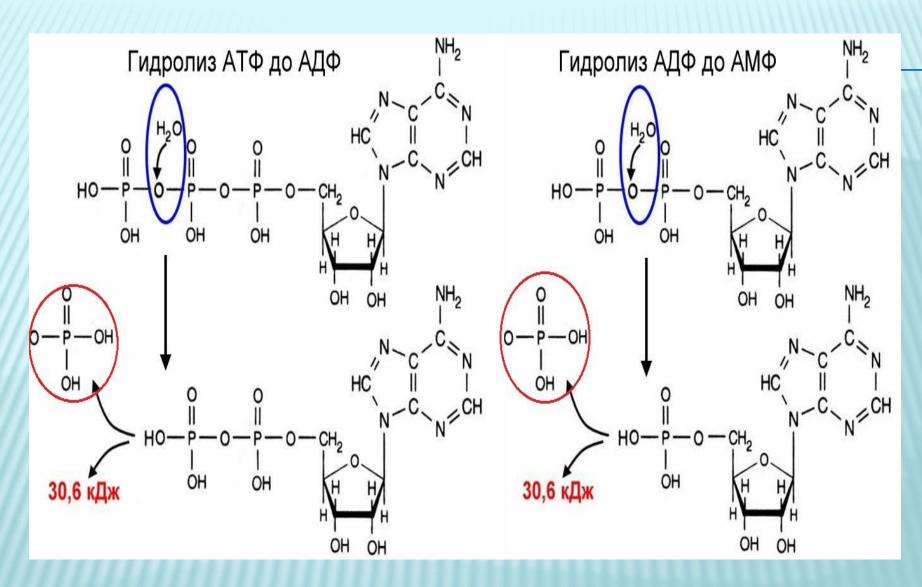
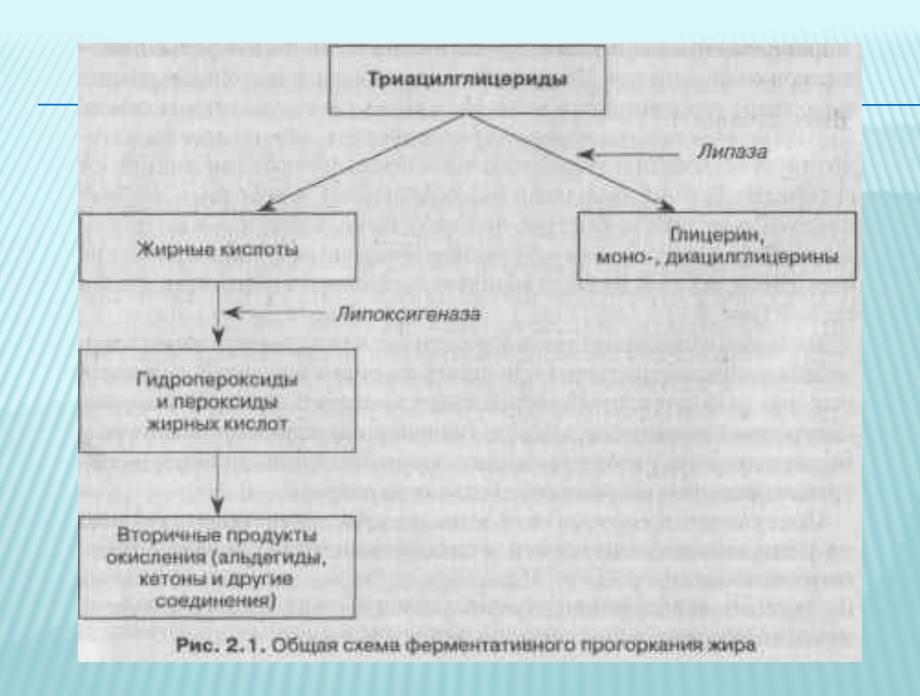
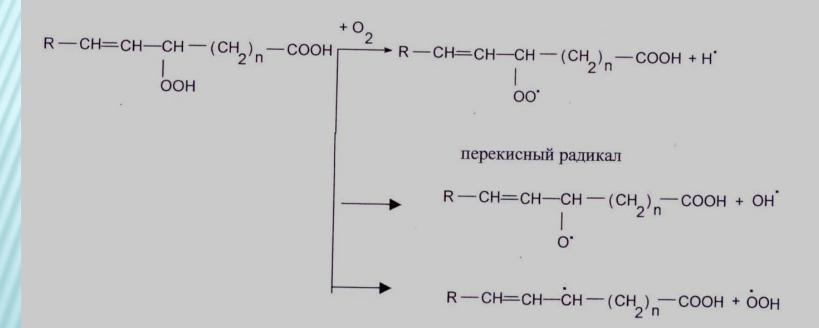


Рис.2. Превращения углеводов.

В автолизирующих мышцах под каталитическим воздействием миозиновой и растворимых АТФ-аз происходит распад АТФ. Параллельно с этим в начальных стадиях автолиза мышц вследствие интенсивно протекающих гликолитических реакций образуется АТФ.

В процессе хранения мышц происходит значительное уменьшение содержания АДФ и других дифосфорилированных мононуклеотидов, в результате чего повышается содержание АМФ, ИМФ и в меньшей степени УМФ и ГМФ.


Рис.3. Изменения фосфорсодержащих соединений.

При автолизе мышечной ткани происходят гидролитические, а также окислительные превращения липидов. Первичными катализаторами окисления липидов являются гемпротеиды (миоглобин, каталаза, пироксидаза и др.)

Учения ТАГ с участием панкреальнеской минады: 1) o M2-0-C-R; 1 suppossaga o M2-0H R=C-0-CH +HOH 3 sushaga, R=C-0-M + R=C-0H M2-0-C-R3 H.K. 1. 21. 2004 1. 21. 21. 2000 2. B-MAP. DAP PH2-0H 3) M2-OH R2-C-O-GH 1. Mourepage 3. Изил-транендоеневаза 3 панкристическоев HC-0-0"-R2 CH2-OH d'-MAP. B-MAP. 4) SH2-OH S-MAP гитерин,

$$R-CH=CH-CH_2-(CH_2)_n-COOH$$
 $\xrightarrow{+O_2}$ $R-CH=CH-CH-(CH_2)_n-COOH$ OOH OOH $R-CH=CH-(CH_2)_n-COOH$ $R-CH=CH-(CH_2)_n-COOH$

$$R-CH=CH-CH-(CH_{2})_{n}-COOH + CH_{3}(CH_{2})_{n}CH_{2}-COOH$$

$$R-CH=CH-CH-(CH_{2})_{n}-COOH + CH_{3}(CH_{2})_{n}CH-COOH + OH$$

$$CH_{3}(CH_{2})_{n}CH-COOH + OH$$

гидроперекись кислоты

радикал кислоты

Этот радикал может взаимодействовать с О2 с образованием гидроперекиси кислоты или с гидроперекисью, что можно представить в виде следующей схемы:

- Для автолиза белков характерны конформационные изменения, в дальнейшем преобладающими становятся изменения, связанные с гидролитическим распадом.
- В зависимости от состава ткани, концентрации гидролаз, степень деструктивных превращений компонентов для разных видов мышечной ткани неодинакова.

Внутриклеточные протеиназы, гидролизующие белки в слабокислой области рН называют катепсинами.(рН=5,3) В настоящее время выделяют 5 типов катепсинов: А, В, С, D, Е, которые отличаются оптимумом рН, субстратной специфичностью и рядом других свойств.

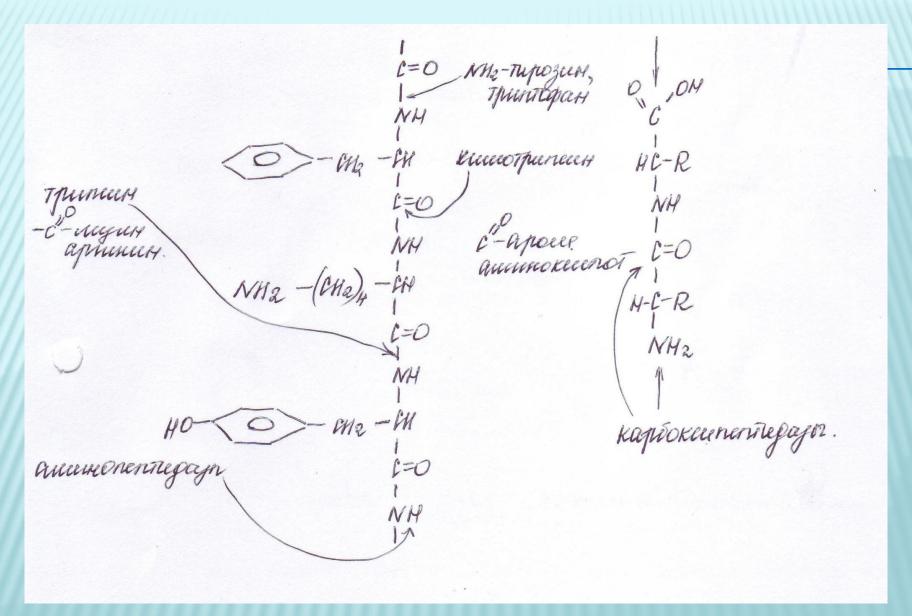


Рис. 8. Протеолиз белков с участием катепсинов.

Белки подверженные автолизу в итоге распадаются до аминокислот под воздействием протеаз. Происходит накопление глютаминовой, аспарагановой кислот, лейцина, валина, α-аланина, фенилаланина, тирозина, треонина и др.

Многие кислоты подвергаются различным превращениям. Гистидин, тирозин, триптофан – декарбоксилируются.

α-аланин, аспарагиновая и глютаминовая кислоты подвергаются дезаминированию.

В результате происходит накопление аминов (гистамин, тирамин, триптамин, таурин).

Hekapiokamer petamen: M2-912-CH2-CH-COOH \rightarrow M2-CH2-CH2-CH + 602

M2 M12 M12 M12

Opneether

Opneether $\frac{cH_{2}-cH_{2}-cH_{2}-cH_{2}-cH_{2}-cH_{2}-cH_{2}-cH_{2}-cH_{2}-cH_{2}}{M_{12}}$ $\frac{c}{M_{12}}$ $\frac{c}{M_{12}}$

DH M2-CN -0004 Tupoguer GH3 Kjujær

Detokumagud megaeea higokeew 3,5 - apenozur gugocapai. Kuinora

выводы:

- 1) Автолиз-это гидролитический распад многих органический веществ (гликогена, фосфатов, жира, белков и др.) под влиянием собственных ферментов, содержащихся в тканях.
- 2) В результате анаэробного гликолиза накапливаются молочная и пировиноградные кислоты, при этом рН снижается от 7 до 6,5
- 3) Под воздействием АТФ-аз распадается АТФ и другие макроэрги (ИМФ и т.д.), происходит накопление неорганического фосфора в результате чего рН снижается от 6,5 до 6.
- 4) При гидролизе липидов с участием липаз накапливаются глицерин и жирные кислоты, которые подкисляют ткань (pH=5,6).С закислением среды происходит разрушение лизосом и высвобождение катепсинов.
- 5) Конечными продуктами автолиза являются углеводы ,белки, фосфорсодержащие соединения, молочная кислота, ПВК, фосфорные кислоты, жирные кислоты, что приводит к снижению рН до 5,3 и активирует катепсины, которые катализируют гидролиз белков до аминокислот.
- 5) Аминокислоты, под воздействием ферментов микроорганизмов дезаминируются и декарбоксилируются, приводя к накоплению H₂S,NH₃,CH₃SH и др.